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Abstract
Ability of electromagnetic fields (EMF) to stimulate
cell proliferation and differentiation has attracted
the attention of many laboratories specialized in
regenerative medicine over the past number of
decades. Recent studies have shed light on bio-
effects induced by the EMF and how they might
be harnessed to help control tissue regeneration and
wound healing. Number of recent reports suggests
that EMF has a positive impact at different stages
of healing. Processes impacted by EMF include,
but are not limited to, cell migration and prolifera-
tion, expression of growth factors, nitric oxide sig-
nalling, cytokine modulation, and more. These
effects have been detected even during application
of low frequencies (range: 30–300 kHz) and extre-
mely low frequencies (range: 3–30 Hz). In this
regard, special emphasis of this review is the appli-
cations of extremely low-frequency EMFs due to
their bio-safety and therapeutic efficacy. The article
also discusses combinatorial effect of EMF and
mesenchymal stem cells for treatment of neurode-
generative diseases and bone tissue engineering. In
addition, we discuss future perspectives of applica-
tion of EMF for tissue engineering and use of
metal nanoparticles activated by EMF for drug
delivery and wound dressing.
Abbreviations
Anti-GFAP: anti-Glial Fibrillary Acidic Protein

Anti-MAP2: anti-Microtubule-Associated Protein 2

Anti-O4: anti-Oligodendrocyte O4 Marker

CREB: cAMP response element-binding protein

DMSO: dimethyl sulphoxide

ECM: extracellular matrix

EGFR: epidermal growth factor receptor

ELF EMF: extremely low-frequency electromagnetic
field

EMF: electromagnetic field

hBM: human bone marrow

MSCs: mesenchymal stem cells

PEMF: pulsed electromagnetic field

ROS: reactive oxygen species

RT-PCR: reverse transcription polymerase chain
reaction

Introduction

The term ‘electromagnetic fields’ (EMFs) indicates a
combination of electric and magnetic fields, which are
able to give rise to each other under certain conditions.
From their time of discovery, EMFs have attracted atten-
tion of scientists as a potential therapeutic and diagnos-
tic modality. Particularly, it relates to application of
non-ionizing EMFs for induction of various biological
effects on cells. It has already been shown that EMF
can cause changes in cell proliferation, differentiation,
cell cycle, apoptosis, DNA replication and expression,
cytokine expression, and more (1–5). A summary of
findings on bio-effects induced by EMF is represented
in Table 1.

Electric fields as a component of EMF have been
employed for manipulation of cells, building artificial
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bio-scaffolds and drug delivery, over past number of
decades (6–8). Recent findings indicate the capability of
electric fields to trigger differentiation of stem cells,
including neural stem cells (9,10). Magnetic fields, a
further component of EMF, has been also the subject of
possible therapeutic applications (11–14). A significant
body of research conducted has been devoted to studies
of bio-effects induced by extremely low-frequency
EMFs (ELF EMF) (15–17), which has demonstrated
promise in becoming a novel bio-physical tool for stem
cell therapy, particularly for treatment of neurodegenera-
tive disorders. Also, ELF-EMF along with pulsed EMF
has shown great potential for bone tissue engineering.

This review aims to summarize progress achieved
recently with an emphasis on application of EMF for
wound healing and tissue engineering.

Bio-effects of extremely low-frequency EMF

ELF-EMF is a form of non-ionizing, low-energy, elec-
tromagnetic field capable of inducing physiological
effects. Pesce et al. identified extremely low-frequency
ELF-EMF waves as being sinusoidal in shape (up to
300 Hz) and of low amplitude (0.2–20 mT), and refers
to them as EMFs (18).

Several studies have demonstrated that EMF can
influence proliferation of cells, which might be effec-
tively employed for cell therapy. De Carlo and co-work-
ers studied results of ELF-EMF on differentiation and
proliferation of mouse skeletal muscle cells (C2C12)
(19). It was found that exposure of myoblasts (at cal-
cium-ion cyclotron frequency 13.75 Hz) led to reduction
in cell growth, while increase in G0/G1 phase transition
was detected. Results obtained indicate that ELF-EMF is
capable of inducing up-regulation of C2C12 differentia-
tion. These authors hypothesized that their findings
might have clinical application for treatment of myode-
generative diseases. The results concur with a report of
de Girolamo et al., in which they showed that treatment
of cultured human tendon cells by pulsed EMF favour-
ably affected cell proliferation along with release of
anti-inflammatory cytokines (20).

One form of ELF-EMF is pulsed electromagnetic
fields (PEMFs), low-frequency fields with specific wave
shapes and amplitude (18). Feasibility of use of PEMFs
has been investigated for more than three decades.
PEMF frequencies and intensity in ranges less than
100 Hz and 3 mT respectively, have been found to be
more effective in accelerating wound repair processes
(21–23). PEMFs have been shown to have an effect
in reducing healing time, and rate of recurrence of
venous leg ulcers, in human clinical studies (24,25).
Stiller et al. showed that exposure to PEMFs can induceT
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significant reduction in wound depth and pain intensity,
for patients with venous ulcers (25). In addition, patients
exposed to PEMFs had significantly higher rates of
healing venous leg ulcers and protection from ulcer
recurrence, in comparison with the control group, and
such patients had their pain reduced or eliminated
(24,26).

In further work by Muccioli et al. reported success-
ful application of PEMF for reduction of knee pain and
necrotic area in a cohort of patients with knee osteone-
crosis (27). In a number of in vivo studies, it has also
been shown that animals treated with PEMFs had signif-
icant reduction in wound size compared to the control
group (28,29).

In addition, some studies have shown that PEMF
treatment stimulated early formation of connective tissue
and a vascular network, early collagen synthesis and
better maturation, all causing complete re-epithelializa-
tion after 12 days exposure (26,30,31). Despite encour-
aging results mentioned above, in a recent randomized
trial study, Gupta et al. demonstrated that EMFs did not
have any significant effect on tissue repair process (32).

EMF for wound healing

Wound healing is a complex process involving cascades
of inflammatory, proliferative and immune reactions. It
involves a series of coordinated events, including bleed-
ing, coagulation, the acute inflammatory response,
regeneration, migration and proliferation of connective
tissue and parenchymal cells, synthesis of extracellular
matrix (ECM) proteins and wound remodelling (33).

It has been shown that EMF may have an effect on
different components of the healing machinery; particu-
larly, it concerns application of low frequencies and
non-thermal effects. It has been hypothesized that EMF
may influence nitric oxide signalling, modulation of
cytokine profiles, expression of growth factors, cell
migration and proliferation, and regulation of mitogen-
activated protein kinase/extracellular signal-regulated
kinase (18,34–37). Application of ELF-EMF for wound
healing may provide anti-inflammatory effects along
with enhancement of the re-epithelialization process
(38).

Effects of EMF on wound healing through promot-
ing tissue regeneration (39,40) and triggering embryonic
stem cell differentiation (41) has led Matos and Cice-
rone to explore the effect of electric fields on neural
stem cell differentiation in mice (9). Initially, neural
stem cells were encapsulated into beads of hydrogel fol-
lowed by application of an electrical field. Beads were
placed into electrolytic cells of different frequency (0.1,
0.5, 1 and 10 Hz) filled with differentiation media. For

the next stage, beads were stained with calcein-AM and
ethidium homodimer for assessment of cell viability and
cell differentiation, carried out using fluorescence confo-
cal microscopy and comparing tests to control. Results
indicated that, cell viability steadily reduced in fields of
frequencies 0.1, 0.5 and 10 Hz, whereas at 1 Hz, num-
ber of viable cells increased sharply, indicating that the
increase occured due to improved cell viability and
accelerated cell proliferation. The authors provided a
possible explanation for this change being the result of
increase in electrokinetically enhanced mass transport.
Regarding effects of electrical fields on cell differentia-
tion, it is important to point out that in neural tissues
apart from neurons, there are glial cells which provide
neuronal support in terms of nutrition and operation.
Normally, neural stem cells differentiate into two types
of phenotype (neurons and glial cells); thus, when mim-
icking this procedure in vitro, the main important aspect
is to consider the ratio of neurons to glial cells (42).
Usually in normal tissue, this parameter is ≥1:1 (43).

Results of Matos and Cicerone’s experiment demon-
strated no clear association of differentiated cell line
proliferation rates with magnitude and frequency of
applied electric field (9). It was shown that proliferation
rate of two cell types either increased or decreased
depending on time of incubation and EMF frequency.
Nevertheless, these findings provide a basis for further
optimization of EMF parameters to control level of pro-
liferation of neural stem cells.

EMF, stem cells and neurodegenerative diseases

Multipotent potential of mesenchymal stem cells
(MSCs) has made them attractive for clinical applica-
tions, including control of proliferation of MSCs by
means of EMF. Wide availability of MSCs of various
types of tissues, and their capability for multilineage dif-
ferentiation, have made them even more appropriate for
medical therapies (44). An important aspect worth men-
tioning, is that MSCs isolated from bone marrow are
capable of differentiating into tissues with ectodermal,
endodermal and mesenchymal origin (45). Moreover,
various manipulations of culture conditions (such as co-
culturing MSCs with Schwann cells) have allowed
MSCs to pass lineage restrictions and convert to com-
plete neural cell types, including astrocytes, oligoden-
drocytes, glial cells and neurons.

Recently, there have been attempts to treat neurode-
generative disease via differentiation of MSCs by exposing
them to ELF-EMF. Indeed, long before using ELF-EMF
it had been shown that exposure of MSCs to specific
external factors such as growth factors and cytokines
(46) or to chemicals such as mercaptoethanol, butylated
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hydroxyanisole and dimethyl sulphoxide (DMSO)
(47,48) lead to their differentiation into various cell
types. However, aforementioned methods cause several
problems such as dysfunctional neuron formation, reduc-
tion in cell viability and high cost of laboratory work.
Thus, attempts to discover more efficient ways of MSC
differentiation into neural cells have been of interest. In
2012, Cho and colleagues demonstrated that ELF-EMF
triggered conversion of human MSCs into neurons (49).
In their experiments, MSCs derived from human bone
marrow (hBM-MSCs) were exposed to continuous sinu-
soidal ELF-EMF. After their treatment with ELF-EMF,
differentiation of hBM-MSCs to neuronal stem cells was
confirmed by amplification in RT-PCR of RNA, western
blotting and immunohistological analysis of 2-fold
increased expression of tau and NF-L proteins. Once
MSCs had been converted into neuronal stem cells, their
differentiation potential into further neural cell types
was evaluated by immunohistochemistry using anti-
GFAP, anti-O4 and anti-MAP2, markers of astrocytes,
oligodendrocytes and neurons respectively. After
12 days exposure to ELF-EMF, the vast majority of
cells expressed abovementioned markers, indicating that
EMF had the ability to induce differentiation of mesen-
chymal stem cells into neurons. To determine biological
mechanisms behind this initiation of neural differentia-
tion, CREB signalling pathway was investigated. This
has been found to play an essential role in the neuro-
trophic response (49). Activation of the pathway was
achieved by phosphorylation of CREB; but in ELF-
EMF-treated cells, the CREB pathway was active for
12 h only after treatment, suggesting that it is responsi-
ble for expression of protein markers for neural cells.
However, a potential mechanism for the whole process
was not indicated; thus, further research on this topic is
required.

One possible mechanism of ELF-EMF action on
hBM-MSCs was proposed by the team lead by Park and
his colleagues (50). Researchers aimed to determine the
signalling pathway activated by increase of intracellular
concentrations of reactive oxygen species (ROS) as a
result of EMF exposure.

A number of studies have demonstrated that there is
a correlation between increase of ROS and increase in
number of proliferating and differentiating cells (51,52).
Thus, a similar mechanism might be activated by
exposing cells to ELF-EMF, which results in increase in
proliferation and differentiation rates. Elevation of
intracellular ROS has been indicated with fluorescent
product dichlorofluoroscein (DCF) in ELF-EMF-exposed
cells (50). Increase in CREB and Akt phosphorylation,
downstream molecules of EGFR, was once again
demonstrated by western blotting. Moreover, immuno-

histochemical analysis of EGFR clustering showed that
ROS induced EGFR activation. Observed changes indi-
cated that ROS played an essential role in proliferation
and differentiation processes. However, little research
has been carried out to identify exact effects of ROS on
specific pathways.

EMF for bone tissue engineering

One further area in bio-medical application, where mes-
enchymal stem cells are activated by EMF, is bone tissue
engineering. Unlike in neural tissue where continuous
EMF as been applied, here a pulsed EMF (PEMF) is
widely employed in therapy (53). Initially, PEMF was
successfully used in 1977 by the team lead by Basset
(54). These researchers demonstrated that low-frequency
PEMF application to a group of the patients with congen-
ital and acquired pseudarthrosis, triggered electrically
induced changes at the cellular level. This resulted in a
high percentage of overall success level. Similar study
has been performed by Simmons et al. (55), who demon-
strated the effectiveness of the method.

It must be noted that bio-effects mediated by PEMF
may vary depending on the type of the cell line under
investigation. Ceccarelli et al. employed bone marrow
and adipose-tissue mesenchymal stem cells to compare
reactions of cells to stimulation by PEMF (21). Cell via-
bility, matrix distribution and calcified matrix production
were analysed after exposure to PEMF (frequency
75 � 2 Hz; intensity 2 � 0.2 mT). Acquired results
demonstrated an increase in cell proliferation and depo-
sition of extracellular matrix components (along with
calcium deposition) in bone marrow-derived mesenchy-
mal stem cells. This indicates that stimulation of bone
extracellular matrix deposition by means of PEMF was
more effective in osteoblasts differentiated from bone
marrow mesenchymal stem cells than from adipose tis-
sue mesenchymal stem cells.

Application of PEMF holds promise of utility for
modification of surfaces of biomaterials exploited in
orthopaedic practice. First, it relates to optimization
properties of materials used for building 3D scaffolds.
Fassina and co-workers chose titanium fibre-mesh scaf-
fold as a model for bio-integration testing, due to high
biocompatibility of titanium and its extensive use in
orthopaedic surgery (23). These workers exposed human
osteoblasts (SAOS-2 line) to PEMF to stimulate cell
proliferation and enhance surface coating. Data obtained
revealed increase in cell proliferation rate and surface
coating with type-I collagen, decorin and osteopontin, in
the post-treatment period. These findings indicate the
feasibility of modification of a scaffold’s surfaces, as an
alternative approach to biointegration.
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Another issue for bone regeneration is a regulation
of bone remodelling. Balance between bone resorption
and ossification is maintained by natural mechanisms.
Application of EMF provides an opportunity to modu-
late the processes in a safe and non-invasive manner.
Kim et al. explored effects of ELF-EMF (17.96 lT,
50 Hz) on bone remodelling and prevention of spinal
cord injury-induced osteoporosis (56). In their study,
ELF-EMF was shown to suppress bone resorption and
promote formation of bone tissue.

The formation of new bone tissue is a complex pro-
cess, where both alkaline phosphatase and osteocalcin
play important roles. Alkaline phosphatase is a hydro-
lyzing enzyme for phosphate and lead to formation of
phosphonic acid, an essential metabolite in promotion
of bone formation. Thus, its expression marks initiation
of bone formation. Moreover, osteocalcin is secreted by
osteoblasts during their differentiation; thus, it is a
strong marker of osteoblast differentiation. In 2012, Luo
and co-workers published experimental results in which
they demonstrated effects of PEMF on osteogenic differ-
entiation of human mesenchymal stem cells (53). The
team used level of alkaline phosphatase activity and
osteocalcin expression as indicators of cell differentia-
tion (53). In their experiments, they isolated mesenchy-
mal stem cells from bone marrow samples collected
from healthy volunteers. Range of applied PEMF fre-
quencies varied from 5 to 150 Hz, for 30 min every day
for 21 days. Results assessed using inverted and trans-
mission electron microscopies showed that cells after
PEMF application increased in size and were more
highly differentiated than the control group (53). All
experimental groups had time-dependent increasing alka-
line phosphatase expression, whereas activity of enzyme
in control groups remained low. It was revealed that level
of osteocalcin increased steadily and reached its maxi-
mum by the third week, when simultaneous formation of
nodules occurred. These pieces of evidence demonstrated
that PEMF triggered bone differentiation, but differentia-
tion level was dependent on frequency applied.

Overall, conclusions made are as follows: PEMF
effect on stem cell differentiation was dependent on its
frequency and experimentation provided a fresh perspec-
tive for clinical application of this procedure to bone
fracture healing. The underlying biological procedure for
effect of EMF on stem cell differentiation remains
unclear, and it still requires further research.

Future perspectives

Employment of EMF in regenerative medicine opens a
new avenue for treatment of various diseases. Due to its
non-ionizing and non-invasive nature, the use of EMF

has evident advantages compared to current chemical,
biological and physical methods of tissue regeneration
and wound healing. Electric and magnetic components
of EMF could be employed separately or in combination
for different therapeutic purposes. Both components
have demonstrated a capability for stimulating cell pro-
liferation and differentiation.

The magnetic aspect of EMF deserves special atten-
tion. Therapeutic application of this component has been
mainly associated with use of magnetic nanoparticles,
which have potential to modulate regenerative processes
selectively at the target zone.

New generation of magnetic nanoparticles provides a
platform for development of therapeutic and diagnostic
modalities, based on thermal and non-thermal properties
of EMF. For example, nanoparticles can be exploited
for stem cell tracking under MRI guidance (non-thermal
application). Thermal application traditionally is associ-
ated with elevation of local temperature using the
response of metal-based nanoparticles to externally
applied magnetic field (high-frequency EMF). Con-
trolled moderate hyperthermia can be employed for local
stimulation of regenerative processes, including repair of
damaged tissues and modulation of immune reactions.

In addition, EMF-induced hyperthermia can provide
a basis for developing systems for targeted drug and
gene delivery. In this case, magnetic fields could be
applied in a non-contact mode to the affected site of the
body for further activation of thermo-responsive
magnetic nanoparticles loaded with chemical or genetic
substances. Therapeutic effects would be monitored in
real-time by means of MRI, where nanoparticles act as
imaging agents. This strategy opens a new field for
developing novel ranges of theranostic agents.

EMF has great potential to be harnessed for wound
treatment in combination with metal nanoparticles of
noble metals. Gold and silver have been credited with
antimicrobial properties for many centuries. Modern
technology allows fabrication of stable gold and silver
nanoparticles with desired size and shape (57–59). Parti-
cle size can provide the possibility of enlarging contact-
ing area, which leads to an increase in anti-bacterial
activity and speeding up processes of wound healing
(60–62). Noble nanoparticles might be incorporated into
wound dressings made of various types of materials
such as polymer films, hydrogels, composites and algi-
nates. EMF can be applied externally and non-invasively
to wound dressings containing the noble nanoparticles
to enhance their antimicrobial action. This approach
might serve as a foundation for developing a completely
new type of wound dressing.

Despite definite advantages and huge therapeutic
capacity of EMF, clinical applications must be carried
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out cautiously with respect to possible adverse effects of
EMF on DNA. Moreover, development of novel EMF-
based techniques requires more study on mutagenic
aspects of EMF. It is essential to obtain better under-
standing of underlying mechanisms of EMF-induced
bio-effects. In this regard, more research must be con-
ducted in this direction.

To summarize, taking into account the great clinical
potential of EMF, we can expect a rise in new tech-
niques for tissue regeneration and wound healing in
close perspective. Such strategy allows combining EMF
with various chemical, physical and biological modali-
ties to provide desired synergistic bio-effects and
enhanced treatment efficacy.
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