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The human skin as a hormone target and an endocrine gland
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ABSTRACT

Hormones influence the development and function of human skin which also produces and releases
hormones. Recently attention has been focused on identifying and understanding the complex en-
docrine properties of human skin, such as expression and function of specific hormone receptors,
synthesis of hormones from major classes of compounds used by the body for general purposes,
organized metabolism, activation, inactivation and elimination of the hormones in specialized cells
of the tissue, exertion of biological activity and release of tissue hormones in the circulation. Specifi-
cally, hormones exert their biological effects on the skin through interaction with high-affinity re-
ceptors, such as several receptors for peptide hormones and neurotransmitters, steroid and thy-
roid hormones. Hormones exhibit a wide range of biological activities on the skin with distinct
effects caused by growth hormone/insulin-like growth factor-I, neuropeptides, sex steroids, gluco-
corticoids, retinoids, vitamin D, peroxisome proliferator-activated receptor ligands, eicosanoids,
melatonin and serotonin. Human skin produces, activates or inactivates metabolically numerous
hormones which are probably important for skin functions but also for functions of the entire
human organism, such as sex hormones, especially in aged individuals, insulin-like growth factor
and -binding proteins, neuropeptides, prolactin, catecholamines, retinoids, steroids, vitamin D and
eicosanoids. These functions are undertaken in most cases by different skin cell populations in a
coordinated way, indicating the endocrine autonomy of the skin. Characteristic examples are the
metabolic pathways of the corticotropin-releasing hormone/propiomelanocortin axis, steroidoge-
nesis, vitamin D and retinoids. The human skin is, thus, the largest, peripheral endocrine organ.
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INTRODUCTION

The human skin is classically regarded as the tar-
get for several hormones whose effects have long been
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recognized and in some instances well characterized'.
For example, hair follicles and sebaceous glands are
the targets for androgen steroids secreted by the go-
nads and the adrenal cortex*® and melanocytes are
directly influenced by polypeptide hormones of the
pituitary*. In addition, hormones play an important
role in the development and the physiological func-
tion of human skin tissues®. From the modern der-
mato-endocrinologic point of view, the skin is not only
the recipient of signals from distant transmitters but
is also an organized community in which the cells and
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organelles emit, receive and coordinate molecular sig-
nals from a seemingly unlimited number of distant
sources, their neighbors and themselves’. In the widest
sense, the human skin and its cells are the targets as
well as the producers of hormones. For example, the
circulating androgens dehydroepiandrosterone
(DHEA) and androstenedione are converted in the
skin to testosterone and further to Sa-dihydrotestoste-
rone (5a-DHT)*®,

Despite this widely accepted knowledge, focus on
the complex endocrine properties of the human skin
has been directed only recently">’. New data have ra-
pidly accumulated in the last three years regarding
expression and function of specific hormone receptors,
synthesis of hormones from major classes of com-
pounds used by the body for general purposes, orga-
nized metabolism, activation, inactivation and elimi-
nation of the hormones in specialized cells of the tis-
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sue, exertion of biological activity and release of hor-
mones in the circulation, and these are included in
this review.

THE HUMAN SKIN AS HORMONE TARGET

Hormone Receptors

Hormones exert their biological effects on the skin
through binding and interaction with high-affinity re-
ceptors. The human skin expresses receptors for pep-
tide hormones and neurotransmitters, which are most-
ly aligned on the cell surface, and for steroid and thy-
roid hormones, which are found in the cytoplasm or
nuclear compartments (Figure 1).

Receptors for peptide hormones and neurotransmit-
ters: Three of four groups of peptide hormone and
neurotransmitter receptors are represented in human
skin. The so-called serpentine or “seven transmem-
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Figure 1. Hormone receptors detected as being active in human skin cells. PTHR/PTHrPR, parathyroid hormone receptor/parathyroid hor-
mone-related peptide receptor; TSHR, thyroid-stimulating hormone receptor; CRH-1R, -2R, corticotropin-releasing hormone receptors
types 1 and 2; MC-1R, -2R, -5R, melanocortin receptor types 1, 2 and 5; p-opiate-R, p-opiate receptors; melatonin-1R, melatonin receptor
type 1; VPAC-2, vasoactive intestinal popypeptide receptor type 2; NYR, neuropeptide Y receptor; CGRPR, calcitonin gene-related peptide
receptor; 5S-HTR, serotonin receptors (5-hydroxytryptamine receptors); PAR, proteinase-activated receptors; IGF-IR, insulin/insulin-like
growth factor I receptor; GHR, growth hormone receptor; GR, glucocorticoid receptor; AR, androgen receptor; PR, progesterone receptor;
THR, thyroid hormone receptors (isotypes al and bl); ER-f, -0, estrogen receptor types f and o; RAR, retinoic acid receptors; RXR,
retinoid X receptors; RXR-a, retinoid X receptor type a; VDR, vitamin D (calcitriol) receptor; PPAR-a, -9, -y, peroxisome proliferator-

related receptors types a, 0, y.
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brane domain” receptors contain an amino terminal
extracellular domain followed by seven hydrophobic
aminoacid segments, each of which spans the mem-
brane bilayer. The seventh segment is followed by a
hydrophilic carboxyl terminal domain, which resides
within the cytoplasmic compartment. To this group
belong:

a) the parathyroid hormone (PTH)/parathyroid hor-
mone-related peptide (PTHrP) receptor which is ex-
pressed in dermal fibroblasts but not in epidermal

keratinocytes®'’;

b) the thyroid-stimulating hormone (TSH) receptor
which is present in epidermal, follicular and neo-
natal keratinocytes, epidermal melanocytes and
dermal and dermal papilla fibroblasts';

c) the corticotropin-releasing hormone (CRH) recep-
tors from which type 1 is predominant in human
skin, being present in epidermal and follicular ke-
ratinocytes, melanocytes and dermal fibroblasts,
whereas sebocytes express types 1 and 2'*;

d) the melanocortin receptors (MC), among them MC1
which presents high affinity for a-melanocyte-sti-
mulating hormone (a-MSH) and adrenocorticotro-
pic hormone (ACTH) and is expressed in epider-
mal and follicular keratinocytes, epidermal and
follicular melanocytes, sebocytes, sweat gland cells,
endothelial cells, Langerhans cells, monocytes,
macrophages, lymphocytes and dermal fibroblasts,
MC2 which is specific for ACTH and is expressed
in epidermal melanocytes and adipocytes, and MC5
which shows affinity for a-MSH and ACTH and is
present in sebocytes, sweat gland cells and adipo-
cytes*7. MCS5 but not MC1 expression can be
enhanced after treatment of cultured sebocytes
with a-MSH";

e) the u-opiate receptors which bind with high affinity
B-endorphin and are expressed in epidermal and
outer root sheath keratinocytes, melanocytes, se-
bocytes and cells of the sweat gland secretory por-
tionlll&l‘);

f) the melatonin receptors type 1, which is the pre-
dominant variant expressed in normal adult epi-
dermal, follicular and neonatal keratinocytes, epi-
dermal melanocytes, and in dermal and hair folli-
cle papilla fibroblasts, and type 2 which has been
detected only in neonatal keratinocytes™;
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g) the vasoactive intestinal popypeptide (VIP) receptors
(VPAC) which are expressed in epidermal kerati-
nocytes, with VPAC2 exhibiting the most pro-
nounced expression in keratinocytes of the basal
layer and in glandular cells surrounded by VIP-
immunoreactive nerve fibers, hair follicle cells next
to VIP-positive fibers, sebocytes, sweat gland cells,
endothelial cells, mononuclear cells and dermal
nerve fibers*;

h) the neuropeptide Y receptor which is present in sebo-
cytes”;

i) the calcitonin gene-related peptide (CGRP) receptor
which is expressed in sebocytes and Langerhans
cells®?;

j) the serotonin receptors (5-hydroxytryptamine recep-
tors, 5-HTR) which can be categorized into seven
families (SHTR1-7) and include at least 21 sub-
types®. They are cation-selective transmitter-ga-
ted ion channels of the Cys-loop superfamily.
SHTR1A, SHTR1B and SHTR2A expression was
detected in epidermal keratinocytes, melanocytes
and dermal fibroblasts, whereas SHTR2A is also
expressed in dermal papilla fibroblasts. SHTR2C
mRNA message was found in follicular melano-
cytes, dermal papilla fibroblasts and dermal fibro-
blasts. The SHTR2B and SHTR?7 variants were
generally detected in normal skin®; and

k) the proteinase-activated receptors (PARs) represent
a unique subclass of G-protein-coupled receptors
of which four family members have now been
cloned from a number of species”. The novel
mechanism of receptor activation involves the
proteolytic unmasking of a cryptic N-terminal re-
ceptor sequence that, remaining tethered, binds
to and triggers receptor function. In addition, short
(5-6 aminoacids) synthetic peptides, based on the
proteolytically revealed motif can activate PARs
without the unmasking of the tethered ligand. In
the skin, PAR-2 is expressed on sensory neurons
and endothelial cells and may have high impact in
regulating cutaneous neurogenic inflammation®.

The second group includes insulin/insulin-like
growth factor I (IGF-I) receptor and the epidermal
growth factor (EGF) receptor which are expressed in
epidermal keratinocytes™ and belong to the single-
transmembrane domain receptors that harbor intrin-
sic tyrosine kinase activity.
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The third group, which is functionally similar to
the second group, is characterized by a large extracel-
lular binding domain followed by a single membrane
spanning segment and a cytoplasmic tail. These re-
ceptors do not possess intrinsic tyrosine kinase activi-
ty but appear to function through interaction with so-
luble transducer molecules which do possess such acti-
vity. In human skin, they are represented by the growth
hormone (GH) receptor which is present in melano-
cytes and dermal fibroblasts, epidermal and follicular
keratinocytes of the outer root sheath, especially the
basal ones, sebocytes, cells of the sweat gland secreto-
ry duct, hair matrix cells of the dermal papillae, en-
dothelial cells, Schwann cells of peripheral nerve fas-
cicles and adipocytes of the dermis®?2,

Steroid hormone and thyroid hormone receptors: The
nuclear receptors differ from the receptors of the cell
membrane in that they are soluble molecules with a
proclivity for employing transcriptional regulation as
a means of promoting their biological effects. Thus,
though some receptors are compartmentalized in the
cytoplasm and others are confined to the nucleus, they
all operate within the nucleus chromatin to initiate
the signaling cascade. They associate in the nucleus
with DNA sequences bearing a specific recognition
element called “hormone response element”. Hor-
mone response elements have different canonical se-
quences for each hormone. These receptors are ex-
pressed in human skin and can be grouped into two
major subtypes groups based on shared structural and
functional properties.

The first group, the steroid receptor family, in-
cludes:

a) the glucocorticoid receptor which is mainly ex-
pressed in basal keratinocytes, Langerhans cells
and dermal fibroblasts®%;

b) the androgen receptor (AR) which is present in epi-
dermal and follicular keratinocytes, sebocytes,
sweat gland cells, dermal papilla cells, dermal fi-
broblasts, endothelial cells and genital melano-
cytes™"; and

¢) the progesterone receptor which is expressed in basal
epidermal keratinocytes only*.

While the glucocorticoid receptor is down-regu-
lated by its ligands in dermal fibroblasts”, AR is sta-
bilized by ligand binding und up-regulated in fibro-

blasts and sebocytes***'. Steroid receptors under basal
conditions exist as cytoplasmic, polymeric complexes
that include the heat shock proteins hsp 90, hsp 70
and hsp 56. Association of the steroid ligand with the
receptor results in dissociation of the heat shock pro-
teins. This in turn exposes a nuclear translocation sig-
nal previously buried in the receptor structure and
initiates transport of the receptor to the nucleus.

The second group, the thyroid receptor family, in-
cludes

a) the thyroid hormone receptors (isotypes al and b1)
which are present in epidermal keratinocytes and

dermal fibroblasts***;

b) the estrogen receptors with the B-isotype being
strongly expressed in the skin detected in epider-
mal and outer root sheath keratinocytes, melano-
cytes, dermal fibroblasts, dermal papilla cells, se-
bocytes, endothelial cells and adipocytes’**” and
the a-isotype found in sebocytes and dermal fibro-
blasts in vitro*™*".

c) the retinoic acid receptors (RAR; isotypes a and v)
and retinoid X receptors (RXR; isotypes a, B, v)
which are expressed in epidermal keratinocytes of
the stratum granulosum, follicular keratinocytes,
sebocytes and endothelial cells, while only the
RXRa isotype is present in melanocytes, fibroblasts

and inflammatory cells**%;

d) the vitamin D receptor (VDR) which is present in
keratinocytes of all epidermal layers except those
of the stratum corneum, epithelial cells of the epi-
dermal appendages, melanocytes, Langerhans
cells, CD11b+ macrophages and CD3+ T-lympho-

cytes™*; and

e) the peroxisome proliferator-related receptors (PPAR)
which are expressed in epidermal and follicular
keratinocytes, sebocytes, sweat gland cells, en-
dothelial cells and adipocytes (isotype v), whereas
isotypes o and d are also expressed in keratinocytes
and sebocytes™*. PPARS is the predominant
PPAR subtype in human keratinocytes and is highly
expressed in basal cells and suprabasal cells.

The members of the thyroid receptor family share
a high degree of homology to the proto-oncogene c-
erbA and high affinity for a common DNA recogni-
tion site. With the exception of the estrogen receptor,
they do not associate with the heat shock proteins and
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are constitutively bound to chromatin in the nucleus.
The estrogen receptor, though demonstrating an as-
sociation with heat shock proteins, is largely confined
to the nuclear compartment®’. The estrogen receptor
binds to its regulatory element as a homodimer, while
the other receptors of this family prefer to bind as
heterodimers together with a RXR molecule. The lat-
ter amplifies both the DNA binding and the functional
activity of the receptor.

Biological Activity of Hormones in Human
Skin

PTHrP: The PTHrP inhibits proliferation of der-
mal fibroblasts in a dose dependent manner, whereas
a dose-dependent stimulation of cAMP, released by
fibroblasts, can be concomitantly observed”’. In con-
trast, PTHrP has no effect on collagen synthesis,
whereas it increases metalloproteinase 2 activity.
Modulation of the PTH / PTHrP receptor on dermal
fibroblasts increases the membrane-associated protein
kinase C activity modulating proliferation of epider-
mal keratinocytes in a paracrine manner™.

CRH: CRH has recently been shown to stimulate
sebaceous lipogenesis®. On the other hand, CRH in-
hibits proliferation of keratinocytes and enhances
immunoactivity by up-regulating the interferon-gam-
ma-stimulated expression of the hCAM and ICAM-1
adhesion molecules and of the HLA-DR antigen®. All
these effects are concentration-dependent with maxi-
mal activity at CRH 107 M.

POMC peptides: There is increasing evidence that
the cutaneous nervous system modulates physiologi-
cal and pathophysiological effects including cell growth
and differentiation, immunity and inflammation as
well as tissue repair. Both cutaneous nervous fibers
and inflammatory cells are able to release neurome-
diators and thereby activate specific receptors on tar-
get cells in the skin. POMC peptides are likely to play
a major role in the regulation of the skin pigmentary
system*® and of cutaneous inflammation'**. ACTH
and a-MSH bind to MC1 of melanocytes and exhibit
the most significant melanogenic activity via cCAMP-
dependent pathways and tyrosinase activation, which
is enhanced by ultraviolet light". Melanogenesis is a
highly regulated process modified by postranslational,
translational or transcriptional mechanisms. In addi-
tion, dendrite formation and stimulation of mela-
nocyte proliferation by POMC peptides have been
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reported. o-MSH can also stimulate attachment of
melanocytes to laminin and fibronectin and inhibit
TNF-o-stimulated expression of ICAM-1.

In keratinocytes, a-MSH stimulates cell prolifera-
tion, down-regulates expression of hsp 70°* and modu-
lates cytokine production with up-regulation of IL-10
and inhibition of the IL-1-induced production and
secretion of IL-8'“*. The latter effect was also detected
in fibroblasts, where it may be mediated by NF-kB
and AP-1%. a-MSH also stimulates synthesis and ac-
tivity of collagenase/matrix metalloproteinase-1 in
dermal fibroblasts®”. TNF-o addition resulted in in-
creased B-endorphin and ACTH levels™ In contrast,
tumor growth factor-f§ (TGF-f)-stimulated fibroblasts
showed no alteration in f-endorphin and o-MSH le-
vels, whereas ACTH release was significantly en-
hanced.

On the other hand, it is likely that overproduction
of ACTH may prolong the anagen phase of the hair
cycle™. In sebocytes, a-MSH was shown to stimulate
proliferation through its binding to MC1 and lipid
synthesis through binding to MC5"". a-MSH may play
a crucial role in endothelial cell function by decreas-
ing the adherence and transmigration of inflammato-
ry cells, a prerequisite for immune and inflammatory
reactions'”>. The POMC peptides have strong immu-
nomodulatory potential resulting in an overall immu-
nosuppressive effect with o-MSH presenting the wid-
est spectrum of activities', such as suppression of the
contact hypersensitivity reaction to nickel by systemic
or topical application". o-MSH in vitro was found to
down-regulate costimulatory molecule expression on
dendritic cells and in vivo via the generation of sup-
pressor T-lymphocytes to induce hapten specific tol-
erance®. Both a-MSH and B-endorphin induced his-
tamine release from human foreskin mast cells in vit-

ro*.

v-MSH also seems to exercise some control over
the cutaneous inflammatory process by similar mecha-
nisms to those of a-MSH, namely down-regulating the
production of proinflammatory cytokines, while the
production of the anti-inflammatory cytokine IL-10
is stimulated®.

In addition to its effect on mast cells, f-endorphin
was shown to stimulate cytokeratin 16 expression and
down-regulate p-opiate receptor expression in human
epidermis®. On the other hand, -endorphin has po-
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tent melanogenic, mitogenic and dendritogenic effects
in cultured epidermal melanocytes®. In sebocytes, p-
endorphin inhibits the EGF-induced proliferation and
stimulate lipogenesis®.

Melatonin: Melatonin inhibits both apoptosis of
keratinocytes incubated in serum-free media and pro-
liferation of keratinocytes cultured in medium sup-
plemented with serum. It increases the numbers of
viable fibroblasts incubated in a serum free medium®.

VIP: VIP was found to stimulate proliferation of
keratinocytes in the presence of lethally treated 3T3
fibroblast feeder cells and EGF, whereas substance P
and CGRP were ineffective”. VIP stimulated adeny-
late cyclase activity in membranes obtained from cul-
tured keratinocytes, indicating an involvement of
cAMP as second messenger in this reaction. VIP and
several inflammatory cytokines (Th-1 and 2) from mast
cells and nerve endings are capable of inducing stem
cell factor production from epidermal keratinocytes,
a mechanism that could be involved in atopic derma-
titis®.

CGRP and PAR-2 agonists: CGRP appears to lead
to a reduction of contact hypersensitivity by inducing
mast cells to degranulate and thus release TNF-o and,
most likely, IL-10%. CGRP, like a-MSH, down-regu-
lates costimulatory molecule expression on dendritic
cells in vitro and via the generation of suppressor T-
lymphocytes to induce hapten specific tolerance in
vivo®. PAR-2 agonists were found to induce the re-
lease of CGRP mediating vasodilation, plasma ex-
travasation as well as the expression of adhesion mo-
lecules on vascular endothelial cells and thus elicit neu-
rogenic inflammation. New evidence suggests that the
release of neuropeptides, including CGRP, from cu-
taneous sensory c-fibers after UV radiation is induced
by keratinocyte-derived nerve growth factor®.

Serotonin: The relationship between function and
serotonin receptor type is complex. Detection of
SHT1A,5HT1B, 5SHT2B and SHT7 receptors on mela-
nocytes and dermal fibroblasts is consistent with a
putative function for serotonin as growth factor™. Se-
rotonin stimulates proliferation of melanocytes in a
medium deprived of growth factors, while it inhibits
cell growth in the presence of growth factors®.

Substance P: Substance P is released from cuta-
neous nerve fibers or mast cells in the extracellular
space or at the cell surface to induce inflammatory or

immune responses. SP promotes both the prolifera-
tion and the differentiation of sebaceous glands™. Mast
cell-derived IL-6 and TNF-o, followed by SP-stimu-
lated degranulation, have the potential to induce nerve
growth factor expression by sebaceous cells, which
results in the promotion of innervation and in the ex-
pression of E-selectin, respectively. Recently, undif-
ferentiated germinative sebocytes were shown to pro-
duce high amounts of neutral endopeptidase in order
to inactivate substance P in vitro and in acne-involved
sebaceous glands in vivo™.

GH and IGF-I: The effects of the GH/IGF-I axis
result in a homeostatic regulation of cell proliferation
and differentiation. GH activity is mainly mediated
by the IGFs but GH also has direct effects on human
skin cells’. GH enhances androgen effects on hair
growth and is likely to be involved in sebaceous gland
development. It stimulates sebocyte differentiation
and also augments the effect of Sa-DHT on sebaceous
lipid synthesis™. On the other hand, GH does not af-
fect keratinocyte or sebocyte proliferation though it
enhances the proliferation of dermal fibroblasts in vit-
ro*”. IGF-I and insulin have been shown to signifi-
cantly stimulate sebocyte proliferation but also influ-
ence sebocyte differentiation, especially in combina-
tion with GH, in vitro™™. Insulin may act as an IGF-I
surrogate as it exhibits marked homology to the IGFs
and binds the IGF-I receptor at high concentrations.
IGF-I was also shown to promote clonal proliferation
of cultured keratinocytes” and to up-regulate hyaluro-
ran synthesis in dermal fibroblasts, exhibiting a simi-
lar effect to basal fibroblast growth factors”. GH and
IGF-I induce increases in skin IGF-binding protein-3
mRNA abundance’ with a magnitude dependent on
the presence of Ca’*. IGF-I at physiological levels is
essential for hair follicle growth by preventing them
from entering the catagen phase”. IGF molecules cir-
culate mostly bound to IGF-binding proteins. The GH
/ IGF-I axis shows an age-related decreased hormone
production concomitant with symptoms similar to
those of GH-deficient adults™. Finally, GH is able to
switch the predominant CRH receptor-1 mRNA ex-
pression to a sole CRH receptor-2 mRNA expression
in human sebocytes", indicating a possible interaction
of the GH/IGF-I axis with the hypothalamic-pituitary-
adrenal axis in human skin. Skin is a target organ for
GH in children; growth hormone increases dermal
thickness and reduces skin stiffness in growth hor-
mone-deficient children”. The IGF-I / IGF-I recep-
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tor loop was found to be critically involved in mainte-
nance of human skin organ cultures ex vivo™; IGF-I
locally produced by dermal fibroblasts interacted in a
paracrine manner with its receptor, predominantly
expressed in basal keratinocytes, to maintain tissue
homeostasis.

Thyroid hormones: Hypothyroidism causes distur-
bances of skin quality and hair character and growth
with an increased telogen rate and diffuse alopecia®®.
Replacement reestablishes the normal anagen/telogen
ratio. L-Triiodothyronine was shown to stimulate pro-
liferation of outer root sheath keratinocytes and der-
mal papilla cells®.

Androgens: The biological activity of testosterone
on the skin is induced in large part by its conversion
to 50-DHT by 5a-reductase® . Testosterone and Sa-
DHT, being the tissue active androgens, stimulate Sa-
reductase mRNA and Sa-reductase activity and their
effects are mediated through their binding to the AR.
They stimulate proliferation of target cells, such as
sebocytes and dermal papilla cells®**. In addition,
there is evidence that the effect of androgens on hu-
man sebocyte proliferation depends on the area of skin
from which the sebaceous glands are obtained; facial
sebocytes are mostly affected™. Androgens as single
compounds seem to be unable to modify sebocyte dif-
ferentiation®, which is stimulated by co-incubation
with PPARy ligands®. Dermal papilla cells mediate
the growth-stimulating signals of androgens by releas-
ing growth factors that act in a paracrine fashion on
the other cells of the follicle®*. Excessive amounts of
tissue active androgens were shown to induce apop-
tosis of dermal papilla cells through the bcl-2 path-
way™. In aged skin, lower serum levels of testosterone
and gradual decline in DHEA and DHEA sulfate are
detected, at least in males™. Unexpectedly, testoste-
rone has been reported to perturb epidermal perme-
ability barrier homeostasis.”

Estrogens: For many years it has been recognized
that estrogens are important in the maintenance of hu-
man skin”. They improve collagen content and quality,
increase skin thickness and enhance vascularization,
features highlighted by the changes that occur in the
skin of postmenopausal women®”. They have been
shown to increase mitotic activity in the epidermis of
women”. Estrogens prolong the growth period of scalp
hair by increasing cell proliferation rates and post-
poning the anagen-telogen transition®. In parallel,
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17a-estradiol, as a therapeutic compound, induces
aromatase activity in intact human anagen hair folli-
cles ex vivo.Under the influence of 17a-estradiol, an
increased conversion of testosterone to 17p3-estradiol
and androstendione to estrone takes place, which
might explain the beneficial effects of estrogen treat-
ment of androgenic alopecia™. 17B-Estradiol exerts
anti-inflammatory activity by inhibiting the chemokine
RANTES and an interferon-y-induced 10 kDa pro-
tein produced in human keratinocytes™®. On the other
hand, estrogens directly suppress an enhanced seba-
ceous gland function'*”. Both testosterone and estra-
diol are able to regulate CRH receptor mRNA levels
in sebocytes, through an opposite way “. Estradiol has
also been shown to increase proliferation of melano-
cytes but decrease both the melanin content and the
tyrosinase activity®. Inhibition of Sa-reductase and of
AR activity resulted in a great stimulation of vascular
endothelial growth factor (VEGF) and aromatase ex-
pression in dermal papilla cells. Strong stimulation of
VEGTF protein and gene expression was also observed
in the presence of 17p-estradiol”’. Rapid potentiation
of endothelium-dependent vasodilation by 17f3-estra-
diol in postmenopausal women is mediated via cy-
clooxygenase 2”. There is current evidence that al-
though skin cells express estrogen receptors making
them directly susceptible to estrogens, a cross-talk
between estrogen and IGF-I signaling pathways obvi-
ously takes place. IGF-I plays a major role in regulat-
ing lipid synthesis in sebocytes and proliferation in
fibroblasts and may, therefore, mediate the estrogen
activity in normal and aged skin cells'™. On the other
hand, phytoestrogens, such as genistein, probably regu-
late sebocyte differentiation through up-regulation of
PPARY expression™.

Glucocorticoids: Glucocorticoids induce hair
growth'", stimulate sebocyte proliferation” and induce
skin atrophy, probably due to an effect on dermal fi-
broblasts'®. The aggravation of sebaceous gland dis-
eases by glucocorticoids may be due to their stimula-
tory effects on proliferation and differentiation in the
presence of other growth factors'”. Glucocorticoids can
regulate keratinocyte differentiation by repressing the
expression of the basal cell specific keratins K5 and
K14 and disease-associated keratins K6, K16, and K17,
an effect induced directly through interactions of ker-
atin response elements with glucocorticoids, and in-
directly by blocking the AP-1 induction of keratin gene
expression'”,
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Retinoids: Retinoic acids exhibit earlier and stron-
ger biological effects on the keratinocytes than retinol,
probably due to their early high cellular accumulation
and their less rapid metabolism'*'®. These findings
substantiate the assumption that the intensity of re-
tinoid signaling is dependent, in part, on the quantity
of cellular retinoic acid. This assumption is supported
by the tight autoregulatory mechanism in human ke-
ratinocytes offering protection against excessive ac-
cumulation of cellular retinoic acid®. all-frans Retin-
oic acid binds to and induces cellular retinoic acid-
binding protein II as well as binding to and activating
nuclear RARs'™. Most actions of all-trans retinoic acid
are now recognized to be mediated through activa-
tion of RARs, whereas in epithelial skin cells, RAR
modulate cell proliferation and RXR rather than in-
fluence cell differentiation'. Retinoids regulate pro-
liferation and differentiation of skin epithelial cells
towards a homeostatic status'® notably inhibiting pro-
liferation and lipogenesis in human sebocytes but en-
hancing these processes under vitamin A deficient
conditions'"'%,

Vitamin D: 10,25(OH),D; (calcitriol), the hormonal
form of vitamin D, like retinoids, rapidly up-regulates
the major vitamin D; (cholecalciferol) metabolizing
enzyme 25-hydroxylase at the mRNA level, which is
an established indicator for calcitriol presence'®. It
enhances the growth-promoting activity of autocrine
EGF receptor ligands in keratinocytes'” and can also
rapidly increase the activity of 173-hydroxysteroid
dehydrogenase (isotype 2), which leads predominantly
to conversion of estradiol to estrone'". This estradiol
inactivation is enhanced with increasing calcitriol lev-
els, which exhibit an antiproliferative effect on kera-
tinocytes. This effect, which is mediated through TGF-
B activation as well as IL-1a, IL-6 and IL-8 suppres-
sion, may provide a rationale for the beneficial ef-
fects of calcitriol and synthetic analog in the treat-
ment of hyperproliferative skin disorders, whereas
stimulatory effects through the EGF-related family
members and platelet-derived growth factor may be
operative in their beneficial effects in skin atrophy
and wound healing'?. The antiproliferative and anti-
inflammatory effects of calcitriol in skin are also me-
diated, at least in part, by a complex TGF-f regula-
tion in dermal fibroblasts'?. Calcitriol also elicits the
complete differentiative program in vitro, with expres-
sion of various genes/proteins, especially of protein
kinase C and phospholipase D, characteristic of both

early and late differentiation of keratinocytes'. In
addition to its effects on keratinocyte proliferation and
differentiation, calcitriol has been shown to protect
keratinocytes from ultraviolet light- and chemothera-
py-induced damage by inhibition of stress-activated
protein kinases activation'”. On the other hand, in
vitro and in vivo experiments have shown that VDR
ligands induce dendritic cells to acquire tolerogenic
properties that favor the induction of regulatory rather

than effector T cells'®.

Leptin: Leptin is a keratinocyte acting in vitro, and
during skin repair in vivo, through a cytoplasmic acti-
vation of the signal transcription factor STAT-3"". In
addition, leptin exhibits a proangiogenic activity pro-
bably through a bcl-2 dependent anti-apoptotic action
on microvascular endothelial cells"*.

PPAR ligands: PPARs are pleiotropic regulators
of growth and differentiation of many cell types, in-
cluding skin cells. PPARa seems to contribute to skin
barrier function and to regulation of inflammation,
PPARYy is necessary for keratinocyte and sebocyte dif-
ferentiation, and PPARJ can ameliorate inflamma-
tory responses in the skin®. PPARS is the predomi-
nant subtype in human keratinocytes and is highly
expressed in basal and suprabasal cells'”'. Induction
of PPARa and PPARY expression is linked to diffe-
rentiation and, accordingly, their expression is in es-
sence confined to suprabasal cells'. PPARS and
PPARY inhibition resulted in a dramatic decrease in
proliferation and a robust up-regulation of the expres-
sion of involucrin and transglutaminase'*'”'. PPARs
are expressed in the human sebaceous gland™'*>'>,
Linoleic acid, a natural PPARS ligand, induces accu-
mulation of neutral lipids in undifferentiated human
sebocytes and reduces spontaneous IL-8 secretion'.
Estradiol metabolizes prostaglandin A2 to A12-pros-
taglandin J2, a natural ligand for PPARY'®, whereas
the expression of PPARY is up-regulated by the phy-
toestrogen genistein®.

Eicosanoids: Proinflammatory cytokines, such as
IL-1fB and TNF-a, induce cytosolic phospholipase A,
expression in keratinocytes and are able to increase
the release of arachidonic acid and stimulate
eicosanoid synthesis'. IL1a expression has been de-
tected in follicular keratinocytes and sebocytes in vivo
and in vitro”'**'* Enhanced keratinocyte prostaglan-
din synthesis after UV light injury is also due to in-
creased phospholipase activity'’®. The major arachi-
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donic acid metabolites in skin cells are prostaglandin
E, and leukotriene B, (LTB,)", while TNF-a stimu-
lates hydroxyeicosatetranoic acid (HETE) production.
Interestingly, LTB, is a natural ligand for PPARa*""%,
soluble 15-HETE, which is a natural ligand for
PPARy"* and is synthesized in human sebaceous
glands™, and PPARSs can regulate lipid and lipopro-
tein metabolism, cell proliferation, differentiation and
apoptosis of various cell types including sebocytes®™'*,
The axis arachidonic acid/LTB,/PPARo/lipid synthe-
sis and inflammation in human skin (Figure 2) was
confirmed by a recent clinical study demonstrating that
treatment of acne patients with zileuton, a selective
5-lipoxygenase inhibitor administered systemically, led
to a 70% reduction in inflammatory acne lesions at 3
months and an approximately 65% reduction in total
sebum lipids as well as a substantial decrease in proin-
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flammatory lipids"*.
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Hormone Synthesis in Human Skin

All types of small molecules can practically represent
precursors of skin hormones which may be proteins, in-

EPIDERMAL .
KERATIMNOCYTES i
FTHP, CRH, uracotin,
ACTH, a-M3H,
cabeholamings
corlicosteroids, androgans,
athA, calcitnol, eicosancids

FOLLICULAR —

KERATIMOCYTES
CRH, urocomin, ACTH,
a-MEH, f-andorphin

DERMAL PAPILLA CELLS
Lirgcorting androgens

NERVES

F-andorphin

Phespholipase A2 ~ Prostaglandin E2

Arachidonic acid

— 1-‘_‘-"‘-!-
LTE4 15-HETE

Synthesis of
free Fatty acids

Figure 2. The cascade of eicosanoid synthesis and their PPAR-bind-
ing in human skin. IL-1f, interleukin-1p; TNF-a, tumor necrosis
factor-a;; LTB4, leucotriene B4; 15-HETE, 15-hydroxyeicosatetra-
noic acid; PPAR-a, peroxisome proliferator-activated receptor-o;
PPAR-y, peroxisome proliferator-activated receptor-y.

cluding glycoproteins, smaller peptides or peptide de-
rivatives, amino acid analogs or lipids (Figure 3).

PTHrP: Keratinocytes produce abundant PTHrP
which is down-regulated by calcitriol, suggesting a
physiological role'”. In addition, PTHrP is widely ex-
pressed in melanocytic cells; however, these cells do

SEBOCYTES
CHH, androgens, estnogens,
atRA, calkitriol, sicosancids

MELAMOCYTES

FTHrP, CRH, uracordin,
ACTH, o-MEH , g-andorphin,
apinephring, [GF-I

DERMAL FIBROBLASTS

ACTH, a-M3H, 8-endorphin,
prolacen (7], 1GF-1, -1,
IGFBEPF-3, estrogeans

SWEAT GLAND CELLS
Urgcortin, androgens

ENDOTHELIAL CELLS
CRH, ACTH, e-MSH, CRH, uroconin, ACTH, a-MSH,

g-gndonphin

Figure 3. Synthesis of hormones in human skin. PTHrP, parathyroid hormone-related peptide; CRH, corticotropin-releasing hormone; ACTH,
adrenocorticotropic hormone; a-MSH, a-melanocyte-stimulating hormone; atRA, all-trans retinoic acid; IGF-I, insulin-like growth factor-I;
IGF-I1, insulin-like growth factor-1I; IGFBP3, insulin-like growth factor-binding protein-3.
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not secrete PTHrP™.

CRH and urocortin: CRH, modified amino acid
as well as CRH binding protein are expressed in hu-
man sebocytes at the mRNA and protein levels” and
have also been detected in epidermal and follicular
keratinocytes, melanocytes, endothelial cells and der-
mal nerves but not in fibroblasts®.

The gene of the CRH-related urocortin, a ligand
of CRH-2 receptor, and accumulation of the corre-
sponding peptide have been detected in human skin
cells™. Urocortin antigen has been localized to epi-
dermal and follicular keratinocytes and sweat glands,
epidermal melanocytes, blood vessels walls, dermal
smooth muscle, mononuclear inflammatory cells and
dermal fibroblasts.

POMC peptides: POMC mRNA is expressed in
melanocytes'®. POMC cleavage products, such as
ACTH, MSH isotypes and $-endorphin, are produced
in several skin cell types in vivo and in vitro™'',
ACTH and a-MSH are mainly expressed in epider-
mal keratinocytes, melanocytes, the outer root sheath
of the anagen hair follicle, dermal fibroblasts and mi-
crovascular endothelial cells. f-Endorphin is mainly
produced by the outer root sheath of the anagen hair
follicle and dermal fibroblasts.

Prolactin: Recent data on prolactin synthesis in
human skin are controversial. While dermal fibroblasts
in vitro were shown to synthesize prolactin in one
study, no prolactin mRNA was detected in human

skin in another study'.

Catecholamines: Norepinephrine and epineph-
rine, which are modified amino acids and natural ac-
tivators of the cAMP pathway, are produced in hu-

man keratinocytes but not in melanocytes'®.

IGF-I: Although there is no evidence that GH or
GH-like peptides are produced in the skin, its down-
stream peptide, IGF-1, is synthesized in the skin, main-
ly by dermal fibroblasts and melanocytes and also pos-
sibly by keratinocytes of the stratum granulosum®'*,
Dermal fibroblasts are also a source of IGF-II and
IGF-binding protein-3">1,

Steroid hormones: The skin, especially the seba-
ceous glands, is capable of synthesizing cholesterol -
from two-carbon fragments such as acetate'"'* - which
is utilized in cell membranes for the formation of the
epidermal barrier, in sebum, and as substrate for ste-

roid hormone synthesis in the skin, and especially in
the sebaceous gland'®. The local formation of sex ste-
roids provides autonomous control to human skin
which is thus able to adjust the formation and meta-
bolism of sex steroids according to local needs*”'*. The
situation of a high secretion rate of adrenal precursor
sex steroids in men and women is completely diffe-
rent from the animal models used in the laboratory
(except monkeys), where the secretion of sex steroids
takes place exclusively in the gonads. In these lower
animal species, no significant amounts of androgens
or estrogens are synthesized outside the testes or ova-
ries and no sex steroid is detected after castration.
Sex steroids in human skin are activated intracellu-
larly and exert their action within the cells without
release in the extracellular space and in the general
circulation (intracrine function)’. The rate of forma-
tion of each sex steroid thus depends upon the level
of expression of each of the specific androgen- and
estrogen-synthesizing enzymes in each cell type. Se-
baceous glands and sweat glands account for the vast
majority of androgen metabolism in skin’.

Skin is also a source of corticosteroids'®.

Retinoids: In humans, vitamin A (retinol) and na-
tural retinoids are derived from carotenoids in the diet
that are modified by the body; in the skin, excess re-
tinol is mainly esterified'*". Human keratinocytes in
vitro are able to produce low amounts of the intracel-
lularly active metabolite all-frans retinoic acid'*'%"",

Vitamin D: The skin is the unique site of cholecal-
ciferol synthesis"*>'* which, like steroid hormones,
derives from cholesterol. Epidermal keratinocytes
contain both the mechanism needed to produce cal-
citriol and VDR,

Eicosanoids: Eicosanoids, such as prostaglandins,
prostacyclins and leukotrienes, are fatty acid deriva-
tives. Eicosanoid synthesis can also be induced in hu-
man keratinocytes and sebocytes by several proinflam-
matory signals'" '3,

Activation and Inactivation of Hormones in
Human Skin

In addition to its capacity to produce hormones,
the human skin is able to metabolize hormones in or-
der to activate or inactivate them. These metabolic
steps are undertaken in most cases by different skin
cell populations in a coordinated way, indicating the
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endocrine autonomy of the skin. Characteristic exam-
ples of this kind of endocrine skin function are the
metabolic pathways of the CRH / POMC axis, sex ste-
roids, vitamin D and retinoids.

The CRH/POMC axis: The skin is strategically
located as a barrier between the external and internal
environments being permanently exposed to noxious
stressors. To effectively deal with such damaging sig-
nals, the skin exhibits a highly organized CRH/POMC
system which is analogous to the hypothalamic-pitu-
itary-adrenal axis and is a major stress response Sys-
tem". Activation of this pathway by stress-sensoring
cutaneous signals, mainly proinflammatory cytokines,
proceeds through the production and release of CRH
from keratinocytes, melanocytes, endothelial cells and
dermal nerves which stimulate skin cell CRH recep-
tors in a paracrine and autocrine manner. CRH syn-
thesis in melanocytes is up-regulated by ultraviolet
radiation B and down-regulated by dexamethasone®.
Interestingly, CRH receptors in human sebocytes can
be regulated by several other downstream hormones,
mainly by testosterone, estrogens and GH”. CRH
enhances the production and secretion of the POMC
peptides a-MSH, ACTH, and B-endorphin, especial-
ly in keratinocytes, melanocytes, endothelial cells and
cutaneous nerves'*'* by a complex multistep process
that requires POMC processing by prohormone con-
vertases'”. These enzymes are expressed in kerati-
nocytes, melanocytes and endothelial cells. Produc-
tion of a-MSH and ACTH can be significantly up-
regulated by ultraviolet light and IL-1 and down-reg-
ulated by TGF-f and dexamethasone. ACTH activates
the steroidogenic acute regulatory protein and thus
the MC receptors inducing, thereby, the production
and secretion of cortisol', a powerful natural anti-
inflammatory factor that counteracts the effect of
stress signals and buffers tissue damage.

Steroidogenesis: Human sebocytes and kerati-
nocytes express the steroidogenic acute regulatory
protein which is essential for cholesterol translocation
from the outer to the inner mitochondrial membrane
and thus the initiation of steroidogenesis'” (Figure
4). They also express P450 side chain cleavage enzyme
which catalyses the conversion of cholesterol into preg-
nenolone, cytochrome P450 17-hydroxylase that leads
to precursors of cortisol and DHEA, and steroidogenic
factor-1 which maintains these reactions. DHEA can
be further converted into androstenedione and the

tissue potent androgen testosterone by sebocytes and
dermal papilla cells since they express 3p3-hydroxys-
teroid dehydrogenase-A>* isomerase®**"’, Further
activation of testosterone by its conversion into Sa-
DHT is catalyzed by So-reductase type 1 which is ex-
pressed in almost all skin cells but especially in seb-
ocytes®, while fibroblasts and dermal papilla cells also
express Sa-reductase type 2¥. Sebocytes are also able
to regulate the balance of testosterone and andros-
tenedione bidirectionally by expressing the 17p-hy-
droxysteroid dehydrogenase isotypes 2 and 3°. Andro-
gen conversion to estrogens in the skin takes place in
dermal fibroblasts which express the responsible en-
zyme cytochrome P450 19 (aromatase), and andro-
gen inactivation to androsterone or 3a-androstanediol
in epidermal keratinocytes which strongly express the
responsible enzyme 3a-hydroxysteroid dehydrogena-
se*". In contrast to this skin-related pathway, con-
version of the adrenal DHEA sulfate - which reaches
the skin through the circulation - to DHEA occurs
with the assistance of dermal papilla cells and mono-
cytes which exhibit steroid sulfatase activity'**"7,
Therefore, the skin is a steroidogenic tissue and dif-
ferent skin cell types exert distinct duties in the syn-
thesis of tissue active androgens and their inactiva-
tion leading to androgen and estrogen homeostasis.
Adrenal androgens may only be activated in the skin
in pathologic conditions which require the presence
of inflammatory cells in the skin.

In addition, evaluation of skin layer-specific pred-
nicarbate biotransformation has shown that epider-
mal keratinocytes can hydrolyze the double ester pred-
nicarbate at position 21 to the monoester prednisolo-
ne 17-ethylcarbonate which nonenzymatically trans-
forms to prednisolone 21-ethylcarbonate. This metab-
olite is enzymatically cleaved to prednisolone, the main
biotransformation corticosteroid product. Fibroblasts
show a distinctively lower enzyme activity'”. Predni-
carbate, prednisolone 17-ethylcarbonate and predniso-
lone 21-ethylcarbonate are hydrolyzed to a minor ex-
tent only. Therefore, epidermal keratinocytes are like-
ly to be responsible for the conversion of potent corti-
costeroids to less potent ones in human skin, while
dermal fibroblasts are barely able to metabolize the
steroids.

The retinoid pathway: Epidermal keratinocytes in
vivo regulate the levels of the intracellularly active all-
trans retinoic acid by induction of retinoic acid 4-hy-
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Figure 4. Steroidogenesis in human skin. Left panel: The complete pathway of sex hormone synthesis from cholesterol. StAR, steroidogenic
acute regulatory protein; P450scc, cytochrome P450 side chain cleavage enzyme; Sa-DHT, Sa-dihydrotestosterone; ER, estrogen receptor.
Middle panel: Sebocytes (S), but neither keratinocytes (K) nor melanocytes (M), express 3p-hydroxysteroid dehydrogenase-A™-isomerase
(A5-3p-HSD), the enzyme converting dehydroepiandrosterone and androstenedione to testosterone at the mRNA level (RT-PCR). Right
pannel: Sebocytes but not keratinocytes are able to metabolize *H-dehydroepiandrosterone ([’H-]DHEA) to downstream androgen com-

pounds.

droxylase'®. atRA inactivation by 4-hydroxylation pre-
vents endogenous and exogenous all-frans retinoic acid
accumulation in the epidermis. In contrast to all-trans
retinoic acid, retinol, retinaldehyde, 9-cis retinoic acid
and 13-cis retinoic acid are not able to regulate their
own hydroxylation. In contrast, human keratinocytes
in vitro rapidly take up and initially convert retinol to
retinyl esters and then with time to low amounts of
the intracellularly active metabolite all-trans retinoic
acid'®!%*11, 3 4-Didehydro-retinol can also be dete-
cted'™', However, ester formation, especially of re-
tinyl oleate (18:1) and retinyl palmitate (16:0), remains
the main root by which excess retinol is also handled
by human keratinocytes in vitro'™!'%5416! Retinoid
metabolism in human skin is likely to be a cell-specific
event since sebocytes exhibit a distinct metabolic pat-
tern compared to epidermal keratinocytes®'.

The vitamin D pathway: The skin is the unique
site of cholecalciferol production and the liver is
thought to be the main site of conversion to 25(OH)D:..

The skin is further capable of activating 25(OH)D,
via la-hydroxylation and the resulting calcitriol plays
a role in epidermal homeostasis in normal and dis-
eased skin. Human keratinocytes have been shown to
substantially but slowly convert *H-D; to *H-25(OH)-
D,'”. In addition, they were found to slowly but con-
stantly form calcitriol from a large reservoir of chole-
calciferol. Interestingly, physiological doses of ultra-
violet light B radiation at 300 nm induce the conver-
sion of 7-dehydrocholesterol via pre-cholecalciferol
and cholecalciferol into calcitriol in the pmol range in
epidermal keratinocytes'. Skin can further degrade
cholecalciferol: Cytochrome P450 27 in epidermis
completes the set of essential cholecalciferol hydro-
xylases'”. Thus, by orchestrating the entire system of
production, activation and inactivation, skin is an auto-
nomous source of hormonally active calcitriol.

Release of Skin Hormones in the Circulation

There is increasing evidence that human skin pro-
duces hormones which are released in the circulation
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and are important for functions of the entire human
organism'®. For example, IGF-binding protein-3 mes-
sage abundance is greater in the skin than in the liver
and circulating IGF-binding protein-3 concentrations
are significantly increased by GH and IGF-1°. GH
has a direct effect on the regulation of IGF-binding
protein-3 synthesis, and the response of skin IGF-bind-
ing protein-3 mRNA levels to both GH and IGF-1I
suggests that dermal fibroblasts could be more impor-
tant than the liver in the regulation of the circulating
reservoir of IGF-binding protein-3 in certain circum-
stances.

A large proportion of androgens and estrogens in
men and women are synthesized locally in the skin
from the inactive adrenal precursors DHEA and an-
drostenedione. DHEA and androstenedione are con-
verted to testosterone and further to Sa-DHT by the
intracellular enzyme So-reductase in skin, thus mak-
ing the skin a source of considerable amounts of the
circulating testosterone and Sa-DHT levels. Circulat-
ing testosterone is co-produced in the skin and in oth-
er peripheral organs®. The best estimate of the intra-
crine formation of estrogens in peripheral tissues in
women is in the order of 75% before menopause and
close to 100% after menopause, except for a small
contribution from ovarian and/or adrenal testoster-
one and androstenedione’. Thus, in postmenopausal
women, almost all active sex steroids are made in tar-
get tissues by an intracrine mechanism.
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