



1 BERGEN

23-11-2025

3

## ANTARCTIC ICE REMOVAL PROGRAM

4 SHAREHOLDERS TOWAGE FLEET DEMAND

6

### Introduction to Fleet Readiness

8 1. In the previous publication titled Eugenix® Shareholders Ice Removal Towage Research and  
9 Development Eugenix P.S.A. has presented some calculations related to number of vessel and power of  
10 the vessels that shareholders will have to consider to be able to remove the Ice in a economical and time  
11 demanding manner to provide the water for its nationals and residents.

12 2. In this publication we will address the questions related to the number of estimated vessels that  
13 shareholders will need in total for successful Ice Removal operations, so let's begin verification of world  
14 vessels stock with the estimated number of vessels required for the Ice Removal program that in the  
15 previous publication was stated to be 164,250 vessels with power output as showed in the Towing Speed  
16 and Power Assumption section below.

18

### 19 Target Reminder for Shareholder

21

- **Target volume:** 10,000,000 km<sup>3</sup> over 50 years.
- **Block size:** 0.1 km<sup>3</sup> per block (1 km × 0.5 km × 0.2 km).
- **Average cadence required:** 5,475 blocks per day.
- **Turnaround constraint:** 1 block per ship per 30 days.
- **Fleet size estimate:** ~164,250 ships (each delivering one block every 30 days).
- **Tug Vessel Horsepower:** ~250,000 - 400,000. (single-block tow at 3 knots).

28

### 29 Towing Speed and Power Assumptions



| SPEED (KNOTS) | DISTANCE (NM) | DISTANCE (KM) | IDEAL POWER (HORSEPOWER) | ADJUSTED POWER (HP x 1.3 – HP x 2.0) | MEGAWATS MW |
|---------------|---------------|---------------|--------------------------|--------------------------------------|-------------|
| 1             | 720           | 1,333         | 7,289                    | 9,476–14,578                         | 7 – 11      |
| 2             | 1,440         | 2,667         | 58,412                   | 75,936–116,824                       | 57 – 87     |
| 3             | 2,160         | 4,000         | 197,000                  | 256,100–394,000                      | 191 – 294   |
| 4             | 2,880         | 5,334         | 467,741                  | 608,063–935,482                      | 453 – 698   |
| 5             | 3,600         | 6,667         | 912,037                  | 1,185,648–1,824,074                  | 884 – 1,360 |

30

31 **World's Cargo Vessels Stock (United Nations Data)**

32

33 3. According to the United Nation currently operated cargo vessels in the world approximate to  
 34 97,000. Based on the Eugenix P.S.A. calculations a number of vessels required to complete a removal of  
 35 10,000,000 km<sup>3</sup> by towing ice in pieces of 0.1 km<sup>3</sup> or smaller pieces equal to 0.1 km<sup>3</sup> using Purse Seines  
 36 nets will be 164,250 tug vessels. It is too early to determine all types of transport that will be required to  
 37 haul off the Antarctic 10,000,000 km<sup>3</sup>, but a significant amount of ice will be removed by tug vessels  
 38 piece by piece. The demand for high power tug vessels will be very large, but achievable technologically.

39

40 **Current Heavy and Ice-Capable Vessels (sorted by power: most → least)**

41

| N | VESSEL NAME                                 | INSTALLED POWER (HP) | INSTALLED POWER (MW) | PRIMARY FUEL TYPE          | WEIGHT (T)         | L × B × H (M)        | BUILDER                            | HOME PORT (STATE)                   |
|---|---------------------------------------------|----------------------|----------------------|----------------------------|--------------------|----------------------|------------------------------------|-------------------------------------|
| 1 | Project 10510 Lider (Zvezda Lider) — design | ~161,000 hp          | ~120 MW              | Planned nuclear (RITM-400) | ~69,700 t (design) | 209 × 47.7 × 20.3    | Zvezda / Russian yards (planned)   | Russia (planned Murmansk)           |
| 2 | Arktika (Project 22220)                     | ~80,400 hp           | ~60 MW               | Nuclear (RITM-200)         | ~33,327 t          | 173.3 × 34.0 × 51.25 | Baltic Shipyard (Saint Petersburg) | Russia (Murmansk / home operations) |
| 3 | Sibir (Project 22220)                       | ~80,400 hp           | ~60 MW               | Nuclear (RITM-200)         | ~32,747 t          | 172.7 × 34.0 × 51.25 | Baltic Shipyard (Saint Petersburg) | Russia (Murmansk / home operations) |
| 4 | Ural (Project 22220)                        | ~80,400 hp           | ~60 MW               | Nuclear (RITM-200)         | ~32,747 t          | 172.7 × 34.0 × 51.25 | Baltic Shipyard (Saint Petersburg) | Russia (Murmansk / home operations) |



|    |                                                              |                                                                       |                              |                                                   |                           |                                         |                                                          |                                               |
|----|--------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------|---------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------------------|
| 5  | Yamal (older<br>Arktika-class<br>heavy nuclear)              | ~70,000–<br>75,000 hp                                                 | ~52–56 MW                    | Nuclear<br>(OK-900A<br>type)                      | ~23,000 t                 | 148.0 × 30.0<br>× 17.2                  | Baltic Shipyard<br>(Saint<br>Petersburg)                 | Russia<br>(Murmansk /<br>port of<br>registry) |
| 6  | Polar Star<br>(USCG Polar<br>class,<br>WAGB-10)              | up to ~75,000<br>hp (combined)                                        | multi-10s MW<br>(combined)   | Gas turbine +<br>diesel (marine<br>distillates)   | ~13,000–<br>14,000 t      | ~122 × 25.5<br>× 42<br>(air-height)     | Lockheed<br>Shipbuilding /<br>US yards (built<br>in USA) | USA (Seattle<br>historically)                 |
| 7  | 50 Let Pobedy<br>(50 Years of<br>Victory,<br>Project 10520)  | ~70,800 hp                                                            | ~52.8 MW                     | Nuclear<br>(OK-900A<br>type)                      | ~25,168 t                 | 159.6 × 30.0<br>× 17.2                  | Baltic Shipyard<br>(Saint<br>Petersburg)                 | Russia<br>(Murmansk /<br>home<br>operations)  |
| 8  | USCGC Healy<br>(WAGB-20)                                     | ~46,350 hp                                                            | ~34.6 MW                     | Marine diesel<br>(diesel-electric)                | ~16,000 t                 | 128 × 25 ×<br>~29<br>(air-height)       | Avondale<br>Shipyard (USA)                               | USA (Seattle)                                 |
| 9  | Polaris (Arctia<br>/ modern<br>Finnish<br>icebreaker)        | ~37,500 hp                                                            | ~28 MW                       | Dual-fuel LNG<br>/ marine diesel                  | ~10,961 t                 | 110 × 24 ×<br>~8–9                      | Arctech /<br>Helsinki<br>Shipyard<br>(Finland)           | Finland<br>(Helsinki)                         |
| 10 | Vladivostok<br>(Project<br>21900M)                           | ~37,350 hp                                                            | ~28 MW                       | Marine diesel<br>(diesel-electric)                | ~14,334 t                 | 119.8 × 27.5<br>× 12.4                  | Vyborg<br>Shipyard<br>(Vyborg)                           | Russia<br>(Vladivostok<br>/ Murmansk<br>ops)  |
| 11 | Shirase<br>(AGB-5003)                                        | ~30,000 hp                                                            | ~22 MW                       | Marine diesel<br>(diesel-electric)                | ~20,000 t                 | 138 × 28 ×<br>9.2                       | Japanese naval<br>shipyards                              | Japan<br>(Yokosuka)                           |
| 12 | Xue Long 2<br>(Snow Dragon<br>2)                             | ~27,625 hp                                                            | ~20.6 MW                     | Marine diesel<br>(diesel-electric;<br>Azipod)     | ~14,300 t                 | 122.5 × 22.3<br>× 11.8                  | Jiangnan<br>Shipyard<br>(Shanghai)                       | China<br>(Shanghai /<br>home<br>operations)   |
| 13 | Kapitan<br>Dranitsyn                                         | ~24,500 hp                                                            | ~18.2 MW                     | Marine diesel<br>(diesel-electric)                | ~14,917 t                 | 129.0 × 26.54<br>× 12.3                 | Built by<br>Wärtsilä /<br>Finnish yard<br>(original)     | Russia<br>(Murmansk)                          |
| 14 | Oden                                                         | ~24,500 hp<br>(commonly<br>cited)                                     | ~18 MW                       | Marine diesel<br>(HFO /<br>low-sulphur<br>diesel) | ~11,000–<br>13,000 t      | 107.8 × 31.0<br>× (air-height<br>~42.5) | Swedish/Finnish<br>yards                                 | Sweden<br>(Norrköping/<br>Stockholm<br>ops)   |
| 15 | Araon (RV<br>Araon)                                          | ~13,410 hp                                                            | ~10.1 MW                     | Marine diesel<br>(diesel-electric)                | ~6,950 GT<br>(mass proxy) | 109.5 × 19.0<br>× 9.9                   | Hanjin Heavy<br>Industries<br>(Busan)                    | South Korea<br>(Incheon)                      |
| 16 | Type 272 /<br>Haibing class<br>(small Chinese<br>icebreaker) | class<br>diesel-electric;<br>~10,000–<br>18,000 hp<br>equiv. (varies) | multi-MW<br>(varies by unit) | Marine diesel<br>(diesel-electric)                | ~4,860 t                  | 103.1 × 18.4<br>× (draft<br>varies)     | Dalian / Chinese<br>yards                                | China<br>(various<br>home ports)              |
| 17 | Canadian Polar<br>Icebreaker                                 | design target:<br>~26,800–                                            | design ~20,000–<br>23,000 t  |                                                   | design ≈158<br>× 28 ×     | Canada (to be<br>assigned)              | Marine diesel<br>(diesel-electric;                       | Seaspan /<br>Davie /                          |



|  |                    |                          |  |  |                 |  |                    |                      |
|--|--------------------|--------------------------|--|--|-----------------|--|--------------------|----------------------|
|  | (program / design) | 53,600 hp<br>(≈20–40 MW) |  |  | (height varies) |  | marine distillate) | consortium (program) |
|--|--------------------|--------------------------|--|--|-----------------|--|--------------------|----------------------|

42

43

### Custom Towage Fleet

44

45 4. Eugenix P.S.A. advises all shareholders to conduct very detail research of the ice removal area  
46 designated by the Eugenix P.S.A. that should be shared with other shareholders for a comparative  
47 purpose to avoid mistakes. The ice removal fleet that shareholders will order from companies of own  
48 choice should include Floating Ice Harvesters, Land Ice Harvesters, Tug Boats and Purse Seine Nets and  
49 all design to work as one uniformed system for the shareholders with rest of the infrastructure located in  
50 the shareholders states that should be also built or converted for the purpose of the arrival of ice via sea.

51

52 5. Shareholders state infrastructure ready for ice should include: Ice Docks, Ice Mills, Reverse  
53 Osmosis Systems, Processed Water Reservoirs, Bottling Plants, Bottling Storage and Cleaning for Bottles  
54 and Containers designed for reuse-refill. Shareholders should also prepare its Distribution in the  
55 shareholders state's so the Ice and Water can move via rail, road, pipe and even aqueducts in directions  
56 where it serves the economy and sustainment 24 hours a day 7 days a week.

57

58

### Steel Stock for Ice Towage Vessels

59

60 6. Steel stock currently in use by the marine cargo vessels in operation might satisfy more than 50%  
61 of required steel to produce 164,250 tugboats capable to tow 0.1 km<sup>3</sup> of ice each. Marine industry might  
62 have to seek sources of steel thru Eugenix P.S.A. shareholders or thru ways of recycling older vessels and  
63 moving as much of the cargo to rail.

64

65

### Ethically Sources Steel

66

67

68 7. Shareholders and maritime fleet producers should resolve steel shortage by involving Rafaltic and  
69 Aquatic indigenous ethnicities of shareholders states. Eugenix P.S.A. Has presented its view regarding  
70 natural resources use by non-indigenous groups and by non-indigenous companies in the arcticus blancus  
71 territories in the publication titled Eugenix® Indigenous Natural Resources Management and Dividend  
72 Rules. Shareholders are welcome to read arcticus blancus rules and implement similar rules to on own  
indigenous Rafaltic and Aquatic territories with its indigenous ethnicities.



73

## Environmentally Safe Mining and Refining

75

76 8. Eugenix P.S.A. Has also addressed the issue of extremely hazardous mining and refining  
77 standards present in heavy mining and refining industries in the petition to the European union parliament  
78 titled: eugenix® EU Petition for Rare Earth Metals Protection. Mining and refining technologies should  
79 always be verified by independent laboratories before they are established. Eugenix P.S.A. strongly  
80 advises all shareholders to always as Mining and Refining company to secure all its infrastructure with  
81 decommission bonds that cover complete dismantlement of all mining and refining activities that includes  
82 all necessary clean up and processing of all remains in case the Mining and Refining companies bankrupt  
83 due to financial or any other reason and leave the costs of clean-up operations to the shareholders state.

84

85 9. To summarise the Shareholders should not worry that there is no steel, energy, or technical  
86 possibilities, Its all ready to piece it up and although the better technology and better results shareholders  
87 seek the more research and innovation they will have to require of its indigenous and neighboring  
88 researchers, engineers, producers, contractors, operators, etc. Competition in this final chapter of  
89 humanity's 5000+ years of work for the invisible purpose might be beneficial as it is still a business in all  
90 of its fractional components.

91

92 10. Eugenix P.S.A. will try to keep up and share all that it learns for the benefit of all that wait for the  
93 water of life.

*K Pawlak*

94

95

96

97

98

99

100

101

102

103

104

Godeo Optimo Maximo - Piast & Wasa  
Arctic Men Extinction Noticed.  
Arctic Magnetic Earth Naturalist.  
Antarctic Mass Excavation Nonetheless.

Founder and Board President of  
Eugenix ® Simple Stock Corporation of  
Arcticus Blancus – Indigenous Arctic Ethnicity  
Arcticus Blancus (Latin), Blanków (Polish).