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Abstract

Gonadal hormones contribute to the sexual differentiation of brain and behavior throughout
the lifespan, from initial neural patterning to “activation” of adult circuits. Sexual behavior is an
ideal system in which to investigate the mechanisms underlying hormonal activation of neural
circuits. Sexual behavior is a hormonally regulated, innate social behavior found across species.
Although both sexes seek out and engage in sexual behavior, the specific actions involved in
mating are sexually dimorphic. Thus, the neural circuits mediating sexual motivation and be-
havior in males and females are overlapping yet distinct. Furthermore, sexual behavior is
strongly dependent on circulating gonadal hormones in both sexes. There has been significant
recent progress on elucidating how gonadal hormones modulate physiological properties
within sexual behavior circuits with consequences for behavior. Therefore, in this mini-review
we review the neural circuits of male and female sexual motivation and behavior, from initial
sensory detection of pheromones to the extended amygdala and on to medial hypothalamic
nuclei and reward systems. We also discuss how gonadal hormones impact the physiology and
functioning of each node within these circuits. By better understanding the myriad of ways in
which gonadal hormones impact sexual behavior circuits, we can gain a richer and more com-
plete appreciation for the neural substrates of complex behavior.
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Gonadal hormones play an essential role in the sexual differentiation of brain and behavior.
Perinatal exposure to gonadal hormones guides neuronal growth, death, synaptogenesis, cy-
toarchitecture, chemoarchitecture, epigenetic modification, and many other brain characteris-



tics to shape or “organize” sexually dimorphic neural circuits (1-6). Later exposure to gonadal
hormones “activates” these circuits to promote expression of the relevant sex-typical behavior
(5-7), and it is this deceptively simple concept we seek to spotlight in this mini-review. What
does hormonal activation of a circuit mean at a mechanistic level? How is this implemented dif-
ferently across circuit nodes and what is the consequence for behavior? We focus on sexual
behavior as an ideal system in which to ask these questions: the behavior is ethologically rele-
vant across species, easily studied in the laboratory, intensely dictated by hormonal status, and
importantly—robustly expressed by both sexes. Therefore, herein we review key components
of the neural circuitry underlying male and female sexual behaviors and highlight, whenever
possible, recent advances in our understanding of the hormonal regulation of such circuits. We
focus on literature from rodent models, due to their notable reliance on hormonal activation
for sexual behavior and for the vast wealth of knowledge available from nearly a century of
careful experimentation on these genetically tractable models.

The Hormonal Regulation of Sexual Behavior

Sexual behaviors are often conceptualized into 2 categories: appetitive and consummatory (8).
Appetitive sexual behavior entails actions that increase the likelihood of mating to occur and
are thought to reflect sexual motivation. This includes approach, solicitation, or investigation of
a potential mate and the exhibition of mate preference, or preference for an intact opposite-sex
conspecific over a same-sex or gonadectomized conspecific. These behaviors can be displayed
by both sexes with some species-specific differences (ie, specific solicitation behaviors may dif-
fer between sexes). On the other hand, consummatory sexual behavior entails the act of mating
itself and is highly sexually dimorphic. In male rodents, this includes mounting and intromis-
sion, whereas in female rodents it is primarily adoption of the lordosis posture (stationary flex-
ion of the spine and deflection of the tail permitting male intromission). Each of these aspects
of sexual behavior is mediated by distinct but frequently overlapping neural substrates, which
will be reviewed in the following sections (Fig. 1).

Sexual behavior in both sexes is strongly regulated by circulating concentrations of gonadal
steroid hormones, including androgens (testosterone), estrogens (estradiol), and proges-
terone. In rodents, this hormonal regulation is perhaps most obvious in females across the 4-
to 5-day estrous cycle (Fig. 2). Estradiol concentrations are low during diestrus but build to a
peak by the afternoon of proestrus, which, in conjunction with a daily circadian signal, triggers
ovulation (9, 10). This is quickly followed by a sharp peak in progesterone produced by the
corpus luteum, which declines by the following morning (11-13). The sequential rise in estro-
gen followed by progesterone primes the female brain and physiology for sexual motivation
and behavior (“in heat” or in estrus) (14). Outside of this window, female mice, rats, and ham-
sters will not be receptive toward a male and will actively reject mating attempts. Consequently,
by co-opting the neuroendocrine signals of ovulation to regulate sexual behavior, the female
conserves energetic resources by only mating when maximally fertile. Importantly, this is dis-
tinct from old-world primates. For females of these species, including women, sexual behavior
is expressed across the ovulatory cycle and the influence of gonadal hormones on sexual be-
havior is comparatively subtle (15-18).

Male sexual behavior is also dependent on sufficient basal circulating gonadal hormones, pri-
marily testosterone and its metabolites. Many of the activational effects of testosterone on male
sexual behavior in rodents can be attributed to its conversion into estradiol by the enzyme aro-



matase (19-22), which is highly expressed along sexual behavior circuits (23, 24). However, for
the full and complete expression of male sexual behavior in laboratory models, both androgen
and estrogen receptor signaling is required (25-28) (but see (26) for discussion of species dif-
ferences). Typical laboratory models do not exhibit hormonal cycles that greatly impact male
sexual behavior, but many other species do display seasonal cycles of reproductive activity,
with commensurate changes to neuroendocrine, behavioral, and sensory systems (29-31).
Furthermore, social experience (eg, social dominance, stress) can modify the hormonal milieu,
even within laboratory models (32-34). Exposure to a potential mate or to a social challenge
elicits an acute and transient increase in testosterone above basal levels in males across
species (35-38). Such socially induced testosterone pulses have been hypothesized to modify
future behavior in several ways, including by promoting territory formation, promoting future
winning (ie, the winner effect), modifying social vigilance, reducing anxiety, and potentially facil-
itating responses to the social situation through rapid, nongenomic actions (38-41). Thus,
adults of both sexes can experience fluctuations in gonadal hormones that may impact brain
and behavior.

The Main and Accessory Olfactory Systems

Animals rely on pheromone signaling to communicate social information essential for repro-
ductive behavior. These chemosignals are detected by the complementary but distinct main and
accessory olfactory systems (MOS, AOS) (42, 43). Within the MOS, sensory neurons in the main
olfactory epithelium (MOE) detect volatile odorants and relay this information to the main ol-
factory bulb. Accordingly, the MOS is thought to be particularly important for initial approach
behavior and inherent social attraction based on volatile cues (44, 45). On the other hand,
within the AOS, sensory neurons of the vomeronasal organ (VNO) detect pheromones trans-
mitted through close contact with a conspecific. This information is then conveyed to the acces-
sory olfactory bulb, which sends projections to the extended amygdala that are considered
particularly important for pheromonal elicitation of reproductive behavior and neuroen-
docrine responses (42, 46). Although these 2 systems are anatomically distinct and respond to
different classes of pheromones, information from the MOS also reaches the extended amyg-
dala through the cortical amygdala and a minor but direct projection from the main olfactory
bulb (44, 47).

Both the MOS and AOS are essential for the complete and appropriate display of sexual behav-
ior. Male and female pheromones elicit distinct sex-specific patterns of activation within both
systems (47-50). Lesions or genetic disruption of either the MOE or VNO disrupt sociosexual
behavior in both sexes (51-56). For example, genetic mutation of the ion channel TrpC2 abol-
ishes pheromone signal transduction in the VNO. TrpC2~/- mice inappropriately mount same-
and opposite-sex conspecifics at high levels (57-59), despite TrpC27/" mice, or even animals
with complete VNO lesions, retaining the ability to discriminate male versus female odorants
through the MOS (54, 60-62). Thus, the AOS is considered particularly important for regulating
the expression of specific social behaviors toward the appropriate target (eg, to mate or to at-
tack) (46).

Recent work has shed light on how fluctuations in sex hormones across the estrous cycle

shape sensory processing in the AOS. Estradiol regulates expression of ion channels within the
VNO and rapidly modifies vomeronasal sensory neuron (VSN) responses to pheromones (63-
65). Furthermore, Dey et al reported that moderate concentrations of progesterone (approxi-



mately that of diestrus, ~13 ng/mL) act to silence VSNs (66). Intriguingly, progesterone-medi-
ated silencing was seen in VSNs sensitive to male pheromones but not VSNs that were sensitive
to predator odor, revealing hormonal modulation specifically of socially relevant sensory input.
However, this study did not test the effect of progesterone at high concentrations seen during
late proestrus (~50 ng/mL (67-69)), so whether the peri-ovulatory progesterone surge might
counterintuitively inhibit pheromone-sensing VSNs or whether this effect is dose-dependent
remains to be tested. Regardless, changing concentrations of circulating estrogen and proges-
terone across the estrous cycle can clearly modulate the female’s earliest sensory detection of
male cues. In males, testosterone has been shown to increase activation of both the AOS and
MOS in response to female pheromones (70, 71), although there is little data available on the
underlying molecular mechanisms mediating this effect (63).

The Extended Amygdala

The medial amygdala (MeA) is a major target of the AOS and minor target of the MOS that has
been strongly implicated in mediating sexual behavior (47, 72). In particular, the posterodorsal
subdivision of the MeA (MeApd) expresses a high density of sex hormone receptors and is well
accepted to be activated during mating or by exposure to opposite-sex pheromones (51, 72-
75). Indeed, recent work has demonstrated that neurons of the MeA differentially encode male
versus female cues (76, 77), and that this separable encoding is shaped by experience (78).
The MeApd appears to regulate aspects of both mate preference and consummatory sexual be-
havior. Lesions of the MeApd disrupt mate preference in both sexes (79-82). MeApd lesions
also disrupt sexual behavior in males (83-86). In females, MeA lesion or MeA chemo-inhibition
reduces but does not eliminate lordosis behavior (82, 87), and MeA lesions do not impact the
amount of mounts or intromissions received in a mating assay (88). These data indicate that
the MeA promotes lordosis responses but is not essential for its expression.

Recent studies targeting genetically identified MeApd subpopulations have highlighted the com-
plex role of the MeApd in regulating multiple social behaviors. Disrupting oxytocin signaling in
aromatase-expressing MeApd neurons eliminated mate preference in males (77). However, ab-
lating these neurons did not impair sexual behavior in either sex, although it did impair aggres-
sive behavior (89). GABAergic MeApd neurons can promote mounting or aggression depend-
ing on stimulation intensity (90). On the other hand, optogenetic inhibition of MeApd
GABAergic neurons did not interrupt intromission, suggesting that while these neurons may fa-
cilitate mount initiation, they are not necessary for continued sexual behavior. Finally, chemo-
genetic stimulation of kisspeptin-expressing MeApd neurons in males promoted social investi-
gation without impacting consummatory sexual behavior (91). Thus, it seems likely that there
exists multiple parallel or combinatorial subcircuits involving the MeApd that guide expression
of the appropriate social behavior to a given stimulus.

Another component of the “extended amygdala,” the bed nuclei of stria terminalis (BNST), is
also implicated in the control of sexual behavior. The BNST receives direct and indirect input
from the AOS, exhibits a high density of steroid hormone receptors, and contains numerous
overlapping neuropeptide subpopulations (72, 92-95). The BNST contains spatially and geneti-
cally segregated neuronal subpopulations capable of driving either aversive or appetitive be-
havioral states. Of note, male cholecystokinin (CCK)-expressing medial BNST neurons are both
preferentially activated by opposite-sex odorants and produce reinforcement when stimulated
(93), which could conceivably contribute to the expression of mate preference. Lesions to the



BNST largely delay or slow mating in males (96-102), with seemingly greater effects in naive
animals (101, 102). Indeed, aromatase-expressing neurons in the principal component of the
BNST (BNSTpr™) were recently reported to exhibit distinct activity patterns in response to
male versus female conspecifics in naive males (103), distinguishing it from the MeA, which re-
quires social experience to encode sex discrimination (78). Inhibiting or ablating these neurons

eliminated mate preference and reduced consummatory sexual behavior and aggression,
whereas stimulating these neurons (in line with the endogenous response to females) pro-
moted mounting directed to male conspecifics (103). Thus, the authors propose that BNSTprA™
neurons represent a neural substrate of sex recognition, vital information for the selection of
appropriate social responses. Interestingly, this role seems unique to males, as BNSTpr4™ ne

rons in females do not show similar activity patterns or effects on behavior (103).

u-

Gonadal hormones regulate several aspects of neuronal physiology within the extended amyg-
dala. First, local replacement of testosterone or estradiol to the MeA in gonadectomized males
facilitates expression of sexual behavior (104-108), indicating that hormonal signaling within
this region promotes activation of sexual behavior circuits. Second, adult gonadal hormones
support sexual dimorphism in regional volume and soma size within the MeA (109, 110). Third,
fluctuations in estrogen and progesterone across the estrous cycle modulate synaptic and elec-
trophysiological features of neurons within these regions (111-114). For example, estrogen
has been reported to selectively regulate the excitability of afferents to the MeA in a source-
specific manner (115). Similarly, the excitatory:inhibitory balance of inputs onto the MeApd
varies across the estrous cycle (116). These changes could regulate the computational weight
of various MeA inputs across the estrous cycle and bias sexual interest to the estrus period.
Finally, gonadal hormones regulate expression of various neuropeptides within the MeA and
BNST of both sexes (117-122), which likely further impacts neuromodulatory control of infor-
mation processing. This includes expression of the neuropeptide CCK within the BNST (118),
indicating that the reward-promoting BNST** population discussed above (93) is likely regu-
lated to some degree by gonadal hormones. However, how these hormone-driven changes in
neuronal physiology relate to observable changes in sociosexual behavior remain unclear.

Medial Hypothalamic Centers

Looking downstream of the extended amygdala, the medial preoptic area (MPOA) is essential
for the display of male sexual behavior. This has been demonstrated by decades of lesion, stim-
ulation, and pharmacological studies which have been excellently reviewed in detail elsewhere
(28, 123). The MPOA receives a wide array of afferents and is thought to integrate information
from both olfactory systems, hormonal state via rich expression of steroid receptors, and sen-
sory input from the genitals (123). The MPOA comprises a heterogenous mix of cell types and
exhibits distinct input/output patterns across different subregions (124-129), complicating
functional dissection of this region. A recent study used fiber photometry to demonstrate esrl
(the gene for estrogen receptor )-expressing MPOA neurons (MPOA®S™) are active during so-
cial investigation and that activity increased further during mounting. Optogenetic manipulation
of MPOA®S"™ neuronal activity bi-directionally regulated expression of mounting behavior
(130). MPOA®S™ neurons also regulated expression of maternal behavior in both sexes, indicat-
ing that esrl expression marks a broader MPOA population containing substrates of multiple
hormonally regulated social behaviors. Interestingly, manipulating MPOA®S"™ neuronal activity
in males did not impact time spent investigating a female during mating assays, suggesting basic
social interest is unaffected. Indeed, the MPOA's role in sexual motivation was formerly contro-



versial (131), as several studies reported that MPOA lesions did not impair male interest in fe-
male conspecifics (100, 132, 133). However, additional MPOA lesions studies across species
have reported deficits in mate preference and pursuit behavior (134-139). Thus, it is now be-
lieved that the MPOA facilitates sexual motivation in addition to mediating consummatory sex-
ual behavior in males.

On the other hand, the MPOA likely does not play a strong role in modulating lordosis behavior
in females. Lesions of this region typically do not impair and may even promote expression of
lordosis (81, 140-143). However, the MPOA does support sexual motivation in females, as
MPOA lesions disrupt approach behavior and mate preference (81, 88, 143-147). Indeed,
McHenry et al recently characterized a MPOA— ventral tegmental area (VTA) circuit that pro-
motes social interest in both sexes and is regulated by ovarian hormones across the estrous
cycle (148). Female neurotensin-expressing MPOA neurons (MPOA"") respond preferentially
to male odors, and estradiol exposure enhanced both MPOA™® intrinsic excitability and
MPOA™" responsiveness to male cues. Stimulation of either MPOA™ neurons or MPOA"S—VTA
fibers was reinforcing in both sexes. Estradiol exposure (whether at proestrus or with exoge-
nous treatment) enhanced this effect in females. Finally, bi-directionally manipulating MPOA"*
activity regulated time spent investigating an opposite-sex conspecific and the expression of
mate preference (148). These data support the role of the MPOA in appetitive sexual behavior
in both sexes and provide a mechanism by which changes in ovarian hormones across the es-
trous cycle can gate female sexual motivation. Complementarily, estrogen can also act to inhibit
female sexual behavior outside of the appropriate proestrus period. Briefly, estrogen acts in
the arcuate nucleus via membrane-bound signaling to drive release of f-endorphin in the me-
dial preoptic nucleus (MPN), which is embedded within the MPOA. This activation of u opioid
receptors in the MPN inhibits female sexual behavior. At proestrus, progesterone acts to de-ac-
tivate MPN p opioid receptors and thereby facilitate the transition to sexual receptivity (re-
viewed in (149, 150)). Thus, estrogen can both augment mate preference during proestrus and
inhibit receptivity in the absence of the proestrus progesterone peak.

The ventrolateral subdivision of the ventromedial hypothalamus (VMHvI) is essential for fe-
male lordosis behavior. Decades of work by Pfaff and colleagues characterized a lordosis reflex
circuit with the VMH as a necessary and sufficient hormone-sensitive locus, which signals to
midbrain premotor regions such as the periaqueductal gray (reviewed in (14, 149, 154, 155)).
Local infusion of estradiol and progesterone into the VMHvI stimulates female sexual behavior
(151-153). With advances in genetic access to specific cell types, progesterone receptor-ex-
pressing neurons in the VMHvl (VMHvI’R) have emerged as particularly essential for female
sexual behavior (156). Recently, Inoue et al described a VMHvI’R—anteroventral periventricu-
lar nucleus (AVPV) circuit which is necessary for female receptivity and exhibits structural re-
modeling across the estrous cycle (157). Female VMHvVI'R neurons are preferentially active
during mating and when investigating males. Indeed, inhibiting VMHvI’R neurons reduced re-
ceptivity in hormonally primed females, but, surprisingly, stimulating VMHvI’R neurons failed to
promote lordosis behavior in unprimed mice. Further investigation revealed that both exoge-
nous estrogen exposure and the natural increase in estrogen during the estrous cycle in-
creases the number of presynaptic terminals in the AVPV from VMHvI’R with striking conse-
quences for the functional connectivity between the VMHvl and AVPV. Inhibition of this path-
way reduces lordosis behavior, indicating that the estrogenic gating of the VMHvI"R-AVPV cir-
cuit likely has behavioral consequences for limiting receptivity to behavioral estrus. Consistent
with these data, the partially overlapping VMHvI®'! neuronal population has been reported to

contain mating- and fighting-activated subpopulations, with the mating-related but not fighting-



related VMHvVI®"™! subpopulation projecting strongly to the AVPV (158). Within the AVPV, there
is further cell-type specificity: ablating AVPV tyrosine hydroxylase neurons did not impair fe-
male sexual behavior (159), whereas ablating AVPV kisspeptin neurons eliminated both mate
preference and lordosis (160). AVPV kisspeptin neurons are themselves strongly regulated by
ovarian hormones and play a prominent role in the neuroendocrine cascade regulating ovula-
tion (161).

Reward Systems

It will surprise no one that sexual activity is rewarding and reinforcing. Activity of the mesolim-
bic dopamine system, namely dopamine release by the VTA into the nucleus accumbens (NAc),
is thought to signal motivational salience of a stimulus, encode reward predictions, and facili-
tate reinforcement learning (162). The VTA receives significant input from the MPOA, MeA, and
BNST in both sexes (163). Numerous groups have reported elevated dopamine release in the
NAc upon presentation of a potential mate and during active mating in both males and females
(164-172). With recent methodological advances enabling greater temporal resolution, we see
escalating amount of dopamine release in a male as the mating behavioral suite progresses,
with the highest release associated with ejaculation (173, 174). In female rats, dopamine re-
lease is dependent on the testing environment. If allowed space to retreat, female rats will pace
the mating interaction such that she receives intromissions at an interval which will maximize
her reproductive success (175-178). Accordingly, sexual reward and elevated dopamine re-
lease during mating is most robustly observed when mating proceeds at the female’s preferred
pace, regardless of her display of lordosis behavior under nonpaced conditions (179-183).
This is consistent with VTA dopamine release reflecting motivational state and sexual reward
separate from motor actions.

VTA—NACc signaling likely supports expression of social interest and mate preference.
Manipulating VTA—NAc neuronal activity bi-directionally modulates time spent investigating a
conspecific (184). Furthermore, lesioning dopaminergic inputs to the NAc or blocking D1 re-
ceptor signaling in the NAc eliminated mate preference (185, 186). Conversely, stimulating
dopamine release within the NAc rescued mate preference in TrpC2”/" mice, which have im-
paired pheromone detection (185). Another region of the ventral striatum, the medial olfactory
tubercle, has been implicated in natural reinforcement and in encoding the innate hedonic va-
lence of odorants (187, 188). Accordingly, lesions that include the medial olfactory tubercle or
chemogenetic inhibition of the medial olfactory tubercle impair female mate preference for
male odorants (189, 190).

Despite limited expression of steroid receptors in the VTA and NAc, estrogen is generally ac-
cepted to augment dopaminergic signaling in this pathway (191, 192). VTA dopaminergic neu-
ron basal firing rate is enhanced and more dopamine released into the NAc during behavioral
estrus (193-195). Several electrophysiological properties of NAc medium spiny neurons have
been reported to either vary across the estrous cycle or to be rapidly modulated by estradiol
exposure (192, 196, 197). Furthermore, like in many of the regions discussed above, estrogen
exposure also regulates spine density in the NAc (198, 199). These effects seem to be region-
specific within the striatum, as estrogenic effects on spine density and excitatory synaptic prop-
erties observed in the NAc were not seen in the caudate-putamen (197, 198). The effects of go-
nadal hormones on NAc physiology is not limited to females, as long-term treatment with an-
drogens in males also modulates NAc dendritic spine density (200).



Another intriguing region that projects heavily to the VTA is the lateral hypothalamic area
(LHA). This highly heterogeneous region modulates motivational drives relevant to many be-
haviors (201-203). The LHA has been implicated in both promoting and inhibiting sexual be-
havior in males. Serotonin is released into the LHA after ejaculation in males, and pharmaco-
logical elevation of serotonin within the LHA both attenuates dopamine release in the NAc in
response to a female and inhibits sexual behavior (204, 205). Thus, serotonin signaling in the
LHA may contribute to the postejaculatory refractory period, during which male sexual motiva-
tion is tightly suppressed. On the other hand, LHA neurons that express the neuropeptide
hypocretin (hcrt, also known as orexin) promote goal-directed action in response to a wide ar-
ray of stimuli (206-208). LHAP“™ neurons have been suggested to promote male sexual behav-
ior based on increased activity during mating and pharmacological manipulation of hcrt signal-
ing (209, 210). Interestingly, hcrt expression is also hormonally regulated in both sexes and
varies across the estrous cycle (210-212), suggesting another avenue by which gonadal
steroids can orchestrate sexual motivation.

Conclusion

Although for ease of explanation we have presented the above discussion as a forward flow of
information from olfactory systems to the extended amygdala to the medial hypothalamus and
reward systems, reality is not so straightforward. All the regions discussed above, and several
others, send projections to each other, allowing for the possibility of feedback and crosstalk
amongst systems. Furthermore, most of these regions have been implicated in the control of
multiple social behaviors beyond sexual behavior, including territorial aggression, parental be-
havior, or maternal aggression. Indeed, based on neuroanatomical interconnections, strong
steroid hormone receptor expression, and overlapping patterns of activation across social be-
haviors, the existence of a “social behavior network” was proposed (72). This network is highly
conserved across taxa, providing a useful framework for comparative analysis (213, 214). This
perspective has also proven useful for conceptualizing hormonal regulation of social behavior
circuits. Through this lens, gonadal hormones act to tune connections and activity patterns
across the social behavior network and thus shift the likelihood of a particular social response
(72, 215). Indeed, as discussed above, gonadal hormones regulate a myriad of structural, elec-
trophysiological, and genetic elements which converge to augment or attenuate circuit activity
and behavioral output (Fig. 2). Recent and continued development of increasingly powerful
tools is enabling unprecedented dissection of neuronal subcircuits with genetic precision. With
this enhanced understanding of the neural circuits of behavior, we have a stronger foundation
from which to probe the hormonal regulation of complex behavior.
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AOS accessory olfactory system

AVPV anteroventral periventricular nucleus

BNST bed nuclei of stria terminalis

CCK cholecystokinin

hert hypocretin

LHA lateral hypothalamic area

MeA medial amygdala

MeApd posterodorsal subdivision of the medial amygdala
MOE main olfactory epithelium

MOS main olfactory system

MPN medial preoptic nucleus

MPOA medial preoptic area

NAc nucleus accumbens

VMHvI ventrolateral subdivision of the ventromedial hypothalamus
VNO vomeronasal organ

VSN vomeronasal sensory neuron

VTA ventral tegmental area
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Figures and Tables

Figure 1.

Primarily App

Neural circuits of male and female sexual behavior. Regions are color-coded based on major contributions to either ap-

petitive or consummatory aspects of sexual behavior.
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Hormonal control of female sexual behavior. The sequential rise in estrogen followed by progesterone across the es-
trous cycle (top) causes female rodents to be sexually receptive near ovulation (middle). This is mediated by an array
of neurophysiological changes to the brain induced by hormonal signaling (bottom). Gonadal steroid hormones signal
both through nuclear receptors and membrane-bound receptors (bottom right). This signaling regulates gene expres-

sion, structural remodeling, neuronal activity, and changes in synaptic properties in a region-specific manner.



