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Abstract Modulated high-frequency radio frequency heating of the ionospheric F region produces a local
modulation of the electron temperature, and the resulting pressure gradient gives rise to a diamagnetic
current. The oscillations of the diamagnetic current excite hydromagnetic waves in the ELF range that propagate
away from the heated region. The generation of the waves in the 2–10Hz range by a modulated heating in the
midlatitude ionosphere is studied using numerical simulations of a collisional Hall-magnetohydrodynamic
model. To model the plasma processes in the midlatitude ionosphere the Earth’s dipole magnetic field and
typical ionospheric plasma parameters are used. As the hydromagnetic waves propagate away from the
heated region in the F region, the varying plasma conditions lead to changes in their characteristics.
Magnetosonic waves generated in the heating region and propagating down to the E region, where the
Hall conductivity is dominant, excite oscillating Hall currents that produce shear Alfvén waves propagating
along the field lines into the magnetosphere, where they propagate as the electromagnetic ion cyclotron
(EMIC) and whistler waves. The EMIC waves propagate to the ion cyclotron resonance layer in the
magnetosphere, where they are absorbed.

1. Introduction

The heating of the ionosphere by high-frequency (HF) radio transmitters has been used to explore the iono-
sphere as a large-scale natural laboratory and to study many plasma processes. Along with the heating of the
plasma many new phenomena have been discovered using the HF transmitters, including stimulated emis-
sions [Leyser, 2001], excitation of plasma waves and turbulence [Guzdar et al 2000], modulation of the iono-
spheric current systems and associated controlled generation of low-frequency electromagnetic radiation
[Papadopoulos et al., 1989; 2011a,2011b; Stubbe, 1996], small-scale irregularities or striations [Gurevich et al.,
1996; Mishin et al., 2005], pump-induced optical processes [Bernhardt, Tepley and Duncan, 1989, Pedersen
and Gerken, 2005], ion up flows in the topside ionosphere [Kosch et al., 2010;Milikh et al., 2010], and descend-
ing artificial ionospheric layers [Pedersen et al., 2010]. The generation and propagation of low-frequency
hydromagnetic waves due to the HF heating are some of the key results of ionospheric heating experiments
at High Frequency Active Auroral Research Program (HAARP) [Papadopoulos et al., 2011a, 2011b].

The low-frequency waves generated in the ionosphere during heating experiments with modulated HF
waves (1–10MHz) originate from three types of physical mechanisms. The first type of mechanism requires
the presence of an electrojet current such as the auroral electrojet and relies on the modulation of the D/E
region conductivity as a response to modulated HF heating. The resulting modification of the electrojet cur-
rent creates an effective antenna radiating at the modulation frequency [Stubbe et al., 1981; Papadopoulos
et al., 1989; Stubbe, 1996]. This mechanism of low-frequency wave generation by modulating the auroral
electrojet is effective at ~80 km altitude in the D/E region and is referred to as the Polar Electrojet antenna.
In the second type of mechanism the HF heating leads to a local hot spot and thus a region of strong gradient
in the plasma pressure. This leads to a diamagnetic current that excites the hydromagnetic waves with the
time scale of the modulation frequency. In this case there is no quasi-steady or background current, and
the wave excitation is controlled by the parameters such as the plasma conductivity, HF modulation fre-
quency, and size of the heated region. This mechanism has been studied in simulations for the F region of
high-latitude ionosphere [Papadopoulos et al., 2011a, 2011b; Eliasson et al., 2012] for conditions typically
corresponding to the HAARP facility. This mechanism, which has been verified by experiments at HAARP,
has features such as scaling of the wave amplitude with frequency [Papadopoulos et al., 2011b]. The third type
of mechanism of generating low-frequency waves is based on nonlinear interaction between the plasma and
fields and was motivated in part by observations by the DEMETER satellite during experiments at HAARP with
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no modulation of the HF power.
These waves are generated by
parametric processes and have
been identified as whistlers with
frequencies close to that of lower
hybrid waves. In another mechan-
ism that relies on nonlinearity, the
interaction of two large-amplitude
HF waves produce oscillations in
electron temperature, and conse-
quently in the collision frequency.
The latter interact with the
polarization current associated
with the HF wave to produce ELF
and VLF waves, which have been
observed in HAARP experiments
[Moore et al., 2013].

In the high-latitude ionosphere
Alfvén wave propagation is
described by the MHD model, in
which all plasma species are mag-
netized [Lysak, 1990]. However, in
the E region altitudes of 80–
120 km where the ion-neutral colli-
sion frequency νin is larger than the
ion cyclotron frequency ωci, the
dominant low-frequency mode is
the helicon mode [Greifinger,
1972; Papadopoulos et al., 1994;
Zhou et al., 1996]. This is the low-
frequency (ω<<ωci) branch of
whistler wave and is carried by the
electrons, since the ions are essen-
tially immobile due to their strong
coupling to the neutrals. In this
region the Hall conductivity σH
dominates over the Pedersen
conductivity σP (Figure 1a). This
altitude dependence of the conduc-
tivities has important consequences
in the propagation of hydromag-
netic waves and magnetosphere-

ionosphere coupling [Hughes, 1983; Lysak, 1990; Pilipenko, 2012; Waters et al. 2013]. The shear Alfvén waves
in themagnetosphere, e.g., themicropulsations, propagating into the ionosphere undergo changes in the iono-
sphere due the Hall conductance. In the high-latitude ionosphere, where the magnetic field is approximately
vertical, the parallel current of the shear mode is closed by the Pedersen current and the inductive response
of the ionosphere generates a compressional mode, which can propagate to the ground. The plasma conduc-
tance plays a similar role in the propagation of the wave generated by the heating in the ionosphere, but by
changing the compressional to shear mode that propagate out to the magnetosphere, as discussed below.

The modulated heating produces a diamagnetic current in a localized heating region at altitudes ~300 km
and excites magnetosonic waves which propagate isotropically. This can be viewed as waves generated by
an oscillating field-aligned magnetic moment. In the Hall region these waves generate a local Hall current
that excites shear Alfvén waves, which then propagate along the field lines to the ionospheric E region

Figure 1. (top) Sketch of the ionosphere (above z = 100 km, with free space
below and a conducting ground) and the regions characterized by the
relative magnitudes of the Hall (σH ) and Pederson (σP ) conductivities. The
space-dependent geomagnetic field B0 magnetizes the plasma. The heated
region is located in the F region at an altitude of 300 km. (bottom) Part of
the simulation domain (shaded in green) using polar coordinates in the
midlatitude region with the Earth’s dipole magnetic field the heated region
(in red) is centered at the magnetic field line L = 1.6, with RE = 6000 km.
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and to the magnetosphere. This mechanism is referred to as ionospheric current drive (ICD) [Papadopoulos
et al., 2011a] and has been detected in HF heating experiments [Papadopoulos et al., 2011b]. Numerical stu-
dies of Alfvén wave propagation in the ionosphere have been conducted by Lysak [1997], who developed a
two-dimensional numerical model to study the propagation of waves in the 1Hz band in the auroral zone
(with vertical geomagnetic field). This model was later extended to three dimensions and to include the
Earth’s dipole magnetic field [Lysak and Song, 2001; Lysak, 2004].

Themidlatitude ionosphere has similar plasma profiles as the auroral region, but themagnetic field geometry
is significantly different in at least two ways (see Figure 1b): the field lines are oblique and curved. This leads
to changes in the propagation characteristics of the low-frequency waves. Further, a wavefront propagating
out of a heated region in the midlatitude ionosphere will intercept a wider area in the E region where the
shear Alfvén waves are excited. The aim of this paper is to study the generation of ELF waves during HF heat-
ing of the midlatitude ionosphere and their propagation in the ionosphere and magnetosphere.

The paper is organized as follows. Section 2 describes the plasma model of the ionosphere for describing the
plasma physical processes during HF heating and the numerical code, as well as the heating process and the exci-
tation of ELF waves. The numerical results are discussed in section 3, where the differences of wave propagation
at different frequencies are pointed out. Finally, the conclusions of the paper are presented in section 4.

2. Ionospheric Plasma Model and Simulation Setup

The ionospheric plasma has a quasi-equilibrium density profile, such as the Chapman profile, and the
propagation of low-frequency waves (ω<<ωci<<ωce) is described by using an MHD model of the plasma.
In the ELF regime, the electron inertia can be neglected in the momentum equation,

0 ¼� e
me

E� ve�B0ð Þ � νenve � ∇Pe
n0

; (1)

where Pe(r, t) =n0kBTe(r, t) represents themodulated electron pressure due to local heating, Te(r, t) is the electron
temperature, kB is the Boltzmann’s constant, νen(r) is the electron-neutral collision frequency, e is themagnitude
of the electron charge, and me is the electron mass. For the modulated electron temperature, we use

Te ¼ Tmod tanh
2 t

Dt

� �
cos ω tð Þ exp � r2θ

D2
rθ

� h� hmaxð Þ2
D2
h

" #
; (2)

where Tmod is the modulation amplitude of the electron temperature, Dt is the risetime, Drθ and Dh are the
widths of the heated region in the latitudinal and radial directions, rθ = (RE+ hmax)(θ� θmax) is the latitudinal
distance to the heated region, rh= h� hmax is the altitudinal distance to the heated region, h= R� RE is the
altitude above ground, hmax is the altitude of the heated region,θmax ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RE þ hmaxð Þ= RELð Þp

is the cola-
titudinal coordinate of the heated region, and ω is the modulation frequency. This setup centers the heated
region on the L shell. In the simulations, we use RE= 6000 km, Tmod = 2000 K, Dt= 0.5 s, Drθ = 40 km,
Dh=20 km, and hmax = 300 km, and L= 1.6. Similar to Eliasson et al. [2012], we have omitted the slow mean
temperature increase, which will not contribute to the wave dynamics, and we have kept only the oscillating
part of the electron temperature.

The ion fluid velocity vi is governed by the ion momentum equation

∂vi
∂t

¼ e
mi

E� vi�B0ð Þ � νinvi ; (3)

where νin is the ion-neutral collision frequency andmi is the ionmass. The electric andmagnetic fields E and B
are governed by Faraday and Ampère’s laws

∇�E ¼�∂B
∂t

(4)

and

∇�B ¼ μ0en0 rð Þ vi � veð Þ: (5)

Respectively, where μ0 is the magnetic permeability in vacuum. The plasma is considered quasi-neutral with
equal electron and ion number densities.
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For the background magnetic field we use a dipole model B0 ¼ B0r r̂þB0θ θ̂, where r̂ and θ̂ are unit vectors in
the radial and colatitudinal direction, respectively; in geomagnetic coordinates, B0r ¼ �2 BeqR3E=R

3cos θ and

B0θ ¼�BeqR3E=R3sin θ are the respective magnetic field components, Beq = 3.12 × 10� 5 T is the magnitude
of the magnetic field at the magnetic equator; and R= RE+ h is the total radius equal to the Earth’s radius
RE plus altitude h.

For numerical convenience, the systemof equations (1)–(5) are converted to amatrix form [Eliasson et al., 2012]

∂A
∂t

¼ �E (6)

and

∂E
∂t

¼ �ωci Γin þ Γenð ÞEþ ε�1 ∇� ∇�Að Þ½ �
μ0

� Re ∇� ∇�Eð Þ½ �
μ0 σ̃

þ ωciRi � ∂
∂t

� �
∇Pe
en0

; (7)

where we introduced the vector and scalar potentials A and ϕ via B=∇×A and E=�∇ϕ� ∂A/∂t, using the
gaugeϕ = 0. TheRe andRi matrices (organizing the vectors as column vectors) are deduced from the electron
and ion equations of motion (1) and (2) via the definitions ve� B0 þme νenve=eð Þ=B0 ≡ Reve and
vi� B0 �miνin vi=eð Þ=B0 ≡ Rivi , respectively. In doing so, the Cartesian coordinate system (x, y, z) of
Eliasson et al. [2012] is here replaced by a spherical coordinate system (R,ϕ, θ) where R,ϕ, and θ are the radial,
longitudinal, and colatitudinal coordinates, respectively. In the spherical coordinates, the magnitude of the
dipole magnetic field isB0 ¼ Beq RE=Rð Þ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3cos2θ
p

. TheRe andRi matrices are used to construct the inverse
of an effective dielectric tensor ε�1 ¼� v2A=ε0c

2
� �

ReRi , where vA= cωci/ωpi is the Alfvén speed, and a
conductivity tensor σ ¼ ωci Γin þ Γenð Þε , where we have denoted Γen = νen/ωce and Γin = νin/ωci. Here
ωci = e B0/mi and ωce = e B0/me are the ion and electron cyclotron frequencies, ωpi = (n0 e2/ε0 mi)

1/2 and
ωpe = (n0e

2/ε0 me)
1/2 are the ion and electron plasma frequencies, ε0 = c2/μ0 is the electric permittivity in

vacuum, c is the speed of light in vacuum, and σ̃ ¼ ε0ω2
pe=ωce. The simulations are conducted in a domain

in the north-south plane in the spherical coordinates with the simulation domain covering R= RE+ 100 km
to RE+ 4000 km in the radial direction and a 90° wide angular region in the colatitudinal direction centered
at the foot of the L= 1.6 shell, i.e., arcsin 1=

ffiffiffi
L

p� �� 45° ≤ θ ≤ arcsin 1=
ffiffiffi
L

p� �þ 45° . The simulation domain
was resolved with 500 cells in the radial direction and 460 cells in the colatitudinal direction. A centered
second-order difference scheme was used in the radial direction and a pseudo-spectral method with
periodic boundary conditions in the colatitudinal direction. The simulations were stopped before the waves
reached the simulation boundaries in the colatitudinal direction, hence eliminating the effects of the
artificial periodic boundary conditions. First-order outflow boundary conditions were used at the top
boundary in the radial direction [see Eliasson et al., 2012]. At the lower boundary between the plasma
and free space at R= RE+ 100 km, the boundary conditions were obtained by assuming continuity of
the horizontal components of the electric field and vector potential, and their radial derivatives. In free
space, we have assumed infinite speed of light and that there are no electric charges or currents, while
the ground at R= RE is perfectly conducting, so that analytic approximations for the free space electromagnetic
fields can be used [see Eliasson et al., 2012].

The conductivity σ∥ along the magnetic field is determined by the electron and ion mobilities, and when
it has high values the parallel electric field is shorted. The Hall conductivity σH dominates over the
Pedersen conductivity σP in the D and E regions, and the reverse is the case at higher altitudes. For

one ion species, the parallel, Pedersen, and Hall conductivity, respectively, are given by σ∥ ¼ σ̃

Γ�1
en þ Γ�1

in

� �
, σP ¼ σ̃ Γen= 1þ Γ2

en

� �þ Γin= 1þ Γ2
in

� �� �
, and σH ¼ σ 1= 1þ Γ2

en

� � � 1= 1þ Γ2
in

� �� �
, where σ̃ ¼

ε0ω2
pe=ωce, and we have denoted Γen = νen/ωce and Γin = νin/ωci.

σP ¼ e2
neνen

me ν2en þ ω2
ce

� �þX
i

niνin
m ν2in þ ω2

ci

� �
" #

(8)

σH ¼ e2
neωce

me ν2en þ ω2
ce

� ��X niωci

mi ν2in þ ω2
ci

� �
" #

; (9)
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σP;e ¼ e2
neνen

me ν2en þ ω2
ce

� � ; (10)

σH;e ¼ e2
neωce

me ν2en þ ω2
ce

� � ; (11)

σjj ¼ e2
X
i

ni
miνin

þ ne
meνen

 !
; (12)

where σ||,e= e2ne/(meνen). The
plasma dielectric function ε is
given by

ε ¼ c2

V2
A zð Þ 1þ ν2in zð Þ=ω2

ci

� � ; (13)

where VA ¼ B=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μonimi

p
is the

Alfvén speed.

The dispersion relation for collisionless obliquely propagating ELF Alfvén waves is

ω2 � v2Ak
2� �

ω2 � v2Ak
2
∥

	 

� ω2

ω2
ci

ν4Ak
2k2∥ ¼ 0; (14)

where k2 ¼ k2∥ þ k2⊥ . The more general case including collisions is discussed by Eliasson et al. [2012]. For
perpendicular propagation (k∥= 0) the solution of equation (14) yields the compressional or magnetosonic
waves with dispersion relation

ω2 � v2Ak
2
⊥ ¼ 0: (15)

On the other hand, for parallel propagation (k= k∥) the dispersion relation becomes

ω2∓v2Ak
2
∥
ω
ωci

� ν2Ak
2
∥ ¼ 0 (16)

For large wave numbers k≳ c/ωpi the shear Alfvén mode splits into two modes (see Figure 2), viz., the right-
hand circularly polarized (R-mode) whistler and the left-hand circularly polarized (L-Mode) electromagnetic
ion cyclotron (EMIC) mode, which is also known as the Alfvén-cyclotron mode. While the whistler mode
can propagate at frequencies ω>ωci at large wave numbers, the EMIC propagates always at frequencies
ω<ωci and has a resonance at ωci for large wave numbers.

The HF heating of the ionosphere with ground transmitters leads tomany physical processes with a wide range
of space and time scales. On the scales relevant to the low-frequency waves, the processes due to HF heating
result in a local hot spot whose size and duration are determined mainly by the beam size and modulation fre-
quency. For the proposed studies the processes at the short scales are not directly relevant and a volume aver-
aged picture is used in this model. Thus, the heated region will be modeled as a region of enhanced electron
pressure Pe=nTe (Te in energy units) and is assumed to have a pancake shapewith Gaussian profiles in the radial
and latitudinal directions. In this case the heating term in the Ohm’s law is �∇Pe in equations (1) and (7). This
pressure gradient in the magnetized plasma leads to the usual diamagnetic current given by

J ¼ B�∇Pe=B2; (17)

which has a time variation due to the modulated nature of the heating. For a scalar pressure the only the
perpendicular component, viz., ∇⊥Te, contributes to the diamagnetic current due to the modulated heating.
This model represents the average effect of the wide range of processes at short scales and is, in general,
adequate for the study of wave generation and propagation by modulated HF heating. Phenomena such
as descending plasma layer [Pedersen et al., 2010; Mishin and Pedersen, 2011], whose characteristics depend
on the parameters of the HF heater and local ionospheric conditions, can have space and time scales that
would require more detailed representation of the heated region.

3. ELF Wave Generation and Propagation in the Ionosphere

The wave propagation model described above yields a framework for the simulation of low-frequency waves
in the ionosphere. The heated region is centered at L=1.6, and the modulation of the HF waves at

Figure 2. Sketch of wave modes propagating parallel to the magnetic field.
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Figure 3. Wave magnetic field (pT) of ELF waves excited in ionospheric heating by HF waves modulated at 2 Hz. (a and b)
The Bx component is associated with magnetosonic waves, while (c and d) the By component is associated with shear
Alfvén waves. Figures 3b and 3d show a close-up of Figures 3a and 3c, respectively, in the heated region.

Figure 4. Wave magnetic field (pT) of 5 Hz ELF waves excited by modulated ionospheric heating. As in Figure 3, (a and b)
the Bx component is associated with magnetosonic waves, while (c and d) the By component is associated with shear
Alfvén waves. Figures 4b and 4d are close-ups of the respective the heating regions.
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frequencies f=2Hz, 5 Hz, and 10Hz is studied. The simulation runs up to 12 s using 4× 105 time steps. The
ionosphere is represented by a Chapman profile, with a peak density of 5 × 1010m�3 at about 500 km,
corresponding to a minimum of the Alfvén speed of vA≈ 900 km/s. An overview of ELF wave generation
and propagation at frequencies 2Hz, 5 Hz, and 10Hz are shown in Figures 3–5, respectively.

As seen in Figures 3 and 4, bothmagnetosonic and shear Alfvén waves are generated by themodulated iono-
spheric heating. At frequencies much below the ion cyclotron frequency (on the order 10–50Hz depending
on altitude and latitude), the shear Alfvén wave propagates primarily along the magnetic field lines.
Magnetosonic waves (visible as Bx) are created by ICD and propagate at large angles to the geomagnetic field
lines upward to the magnetosphere (see Figures 3a and 3b and 4a and 4b) and downwards to E region.
Somewhat below the L= 1.6 magnetic field line extending from the heated region are whistler mode waves
(cf. Figure 4d). These waves are not created at the heated location but at the Hall region at the bottom of the
ionosphere where magnetosonic waves have been mode converted to helicon waves propagating to higher
altitudes as whistler waves. Near the heated region there is also a direct generation of EMIC waves.

As the wave frequency becomes comparable to the ion cyclotron frequency, the splitting of the shear Alfvén
wave into the whistler and EMIC branches become more pronounced (cf. Figure 2). The whistler wave is
characterized by a longer wavelength and higher propagation speed than the EMIC wave at a given
frequency. The shorter wavelength EMIC waves and longer wavelength whistler waves are clearly
distinguished in Figure 5d, while the magnetosonic wave propagating at larger angles to the geomagnetic
field is visible in Figure 5b.

The propagation of the EMIC toward the ion cyclotron resonance at high altitudes is of particular interest
since they play an important role in plasma heating in themagnetosphere, The resonance surface is indicated
by thin lines in Figures 5a and 5c. Figure 6 shows contours of the EMIC waves for selected values of the wave-
length for parallel propagation at 10 Hz.

The 10Hz EMIC waves cannot propagate beyond ion cyclotron resonance layer where their wavelength goes
to zero, and the EMIC wave energy will pile up near the resonance. The amplitude of the wave magnetic field
can be estimated from the conservation of energy. For simplicity we consider propagation parallel to the

Figure 5. Wavemagneticfield (pT)of10 HzELFwavesexcitedbymodulated ionosphericheating. (aandb)TheBxcomponent is
associatedwithmagnetosonicwaves,while (candd) theBy component is associatedwithshearAlfvénwaves. Figures5band5d
show a close-up of Figures 5a and 5c, respectively, in the heated region. The location of the ion cyclotron resonance at 10Hz is
indicated with a thin line in Figures 5a and 5c.
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magnetic field, k= k∥. The wave energy densityW consists of a sum of magnetic wave energy density B2/(2μ0)
and of ion kinetic energy density n0 miv2i =2. From Ampère’s law we have k∥×B= μ0en0vi when ck∥/ωpe≫ 1.

Therefore, instead of the energy densityW=B2/(2μ0), we will instead haveW ¼ n0 mi v2i =2 ¼ c2k2∥=ω
2
pi

	 

B2= 2μ0ð Þ.

Energy conservation requires that the wave intensity I= vgrW≈ constant, where vgr =∂ω/∂k∥ is the group speed.

For ck∥/ωpe≫1 we have the EMIC wave frequency ω≈ωci 1� ω2
pi= c2k2∥
	 
	 


and group velocity vg ¼ 2ωciω2
pi=

c2k3∥
	 


, hence I= vgrW= (2ωci/k∥)B
2/(2μ0). Solving for B, we find

B ∼ constant�
ffiffiffiffiffiffiffi
ωpi

ωci

r
1� ω

ωci

� ��1=4

;

which predicts an increase of the wave magnetic field amplitude near the resonance. These waves suf-
fer cyclotron damping, which may become important at very small wavelengths when the phase
velocity ≈ωci=k∥ ≈vA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω=ωci

p
becomes comparable to the ion thermal speed.

4. Summary

The excitation and propagation of ELF waves in the midlatitude ionosphere and magnetosphere during HF
heating are simulated using a MHD model. The simulation model uses a realistic profile of ionospheric
plasma, along with the Earth’s magnetic dipole field. The latter is an important element in the modeling of
the midlatude ionosphere because of the geometrical effects in wave propagation. The simulation results
show direct generation of EMIC waves at the source region as well as mode conversion of magnetosonic
waves through the excitation of Hall currents in the E region. The waves are generated at the modulation fre-
quency of the HF radio waves by the ionospheric current drive, which does not involve a quasi-steady current
in the ionosphere, viz., an electrojet current [Papadopoulos et al., 2011a, Sharma et al., 2016]. This mechanism
of wave generation was found to be effective in the F region ionosphere in the high latitudes, with the auroral
electrojet in the D/E region. In the midlatitudes with no quasi-steady current system, this mechanism is
expected to be a dominant process for exciting ELF waves. The results are thus directly relevant for the
heating experiments with the Arecibo facility, which have been commissioned recently.

The simulation results are relevant to in situ satellite measurements near the heating site and can be used to
study energetic particle precipitation from radiation belts through resonant pitch angle scattering. In the higher
frequency range the excited waves are the EMIC waves, which play an important role in the plasma heating in
themagnetosphere. A study of the interaction of hydromagnetic waves with trapped protons in the innermag-
netosphere shows that the proton precipitation can be enhanced significantly [Shao et al., 2009]. The ELF waves

Figure 6. (a) Propagation of 10 Hz EMIC waves toward the ion cyclotron resonance, showing the By component of the wave
magnetic field (pT). Contours indicate the wavelength of the EMIC wavelength, which goes to zero as the EMIC wave
approaches the altitude of the resonance. (b) Close-up of EMIC waves with a wavelength of about 60 km.
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excited by ionospheric heating, in particular the EMIC waves, are a possible source of the waves that can
lead to such effects. However, the simulations show that the waves do not propagate beyond the reso-
nance layer, and thus may limit the interaction with the energetic particles in the magnetosphere. It should
be noted that the simulations consider an ionospheric plasma with singly charged oxygen as the ion spe-
cie. At higher altitudes, viz., above 1000 km, protons become the dominant ion specie and a more complete
model should include a mix of oxygen ions and protons, with altitude dependent densities. With such a
model the oxygen ions will have a dominant role in the wave generation in the F layer, as in the present
model, and as the hydromagnetic waves propagate to higher altitudes its propagation characteristics will
be governed mainly by the protons. The resonance layers in a plasma with protons as the main ion specie
will be farther away in the radiation belt, and thus, the extent of the interaction of the EMIC waves with
protons should be assessed with a more detailed study.

The simulations presented here were carried out in a domain defined in the spherical coordinates, which is
suitable for the dipole magnetic field geometry. However, the realistic geometry is more complicated due
to the dipole tilt and the manner in which the variation of the vertical magnetic field with height deviates
from the radial stratification of the ionosphere. The wave propagation in the midlatitudes formulated using
nonorthogonal flux coordinates [Lysak, 2004] treats these effets properly and provides amore detailed frame-
work. However, the main results of the ELF wave excitation presented here is not expected to be significantly
different when analyzed in the more complicated nonorthogonal system.

The key element in the excitation and propagation of ELF waves is the altitude dependence of the plasma
conductivity, viz., the Hall and Pedersen conductances. The role of this feature in magnetosphere-ionosphere
coupling has been actively studied [e.g., see Hughes, 1983; Lysak, 1990, 2004; Pilipenko, 2012; Waters et al.
2013]. The shear Alfvén waves in the magnetosphere, e.g., the micropulsations, propagating into the iono-
sphere undergo changes in the ionosphere due the varying conductance. In the high-latitude ionosphere,
the parallel current of the shear mode is closed by the Pedersen current and the inductive response of the
ionosphere generates a compressional mode, which can propagate to the ground. On the other hand, the
excitation of ELF waves in ionospheric heating presented in this paper follows the opposite sequence: first
exciting the compressional mode and then the shear mode.

The HAARP facility has enabled new advances in ionospheric physics, e.g., excitation of ELF waves
[Papadopoulos et al., 2011a, 2011b; Moore et al., 2013], formation of ducts and ion up flows [Kosch et al.,
2010, Milikh et al., 2010], and descending artificial ionospheric layers [Pedersen et al., 2010]. The new plasma
layers are results of enhanced ionization by electrons, which are accelerated to suprathermal speeds by
turbulence resulting from HF heating [Mishin and Pedersen, 2011]. Simulations of wave processes in the
presence of ducts using a Vlasov code show stochastic electron heating due to upper hybrid and Bernstein
wave turbulence (A. Najmi et al., Theoretical studies of fast stochastic electron heating near the upper hybrid
layer, submitted to Radio Science, 2016) and thus provide insights into the kinetic processes in HF heating.
Experiments with the Arecibo heating facility are expected to yield more details of these phenomena in
the midlatitude ionosphere, and those planned considering detection of the signatures of heating-induced
processes by spacecraft such as the Van Allen Probes can provide deeper insight into the effects on energetic
particles in the radiation belt.

References
Bernhardt, P. A., C. A. Tepley, and L. M. Duncan (1989), Airglow enhancements associated with plasma cavities formed during ionospheric

heating experiments, J. Geophys. Res., 94, 907.
Eliasson, B., C.-L. Chang, and K. Papadopoulos (2012), Generation of ELF and ULF electromagnetic waves by modulated heating of the

ionospheric F2 region, J. Geophys. Res., 117, A10320, doi:10.1029/2012JA017935.
Greifinger, C. (1972), Ionospheric propagation of oblique hydromagnetic plane waves at micropulsation frequencies, J. Geophys. Res., 77,

2377–2391, doi:10.1029/JA077i013p02377.
Gurevich, A., A. Lukyanov, and K. Zybin (1996), Anomalous absorption of powerful radio waves on the striations developed during

ionospheric modification, Phys. Lett. A, 211, 363–372.
Guzdar, P. N., N. A. Gondarenko, K. Papadopoulos, G. M. Milikh, A. S. Sharma, P. Rodriguez, Y. V. Tokarev, Y. I. Belov, and S. L. Ossakow (2000),

Diffraction model of ionospheric irregularity-induced heater-wave pattern detected on the WIND satellite, Geophys. Res. Let., 27, 317–320.
Hughes, W. J. (1983), Hydromagnetic waves in the magnetosphere, Rev. Geophys. Space Phys., 21, 508–520.
Kosch, M., Y. Ogawa, M. Rietveld, S. Nozawa, and R. Fujii (2010), An analysis of pump-induced artificial ionospheric ion upwelling at EISCAT,

J. Geophys. Res., 115, A12317, doi:10.1029/2010JA015854.
Leyser, T. B. (2001), Stimulated electromagnetic emissions by high-frequency electromagnetic pumping of the ionospheric plasma, Space Sci. Rev.,

98, 223–328.

Radio Science 10.1002/2016RS005953

SHARMA ET AL. ELF WAVES DURING IONOSPHERIC HEATING 970

Acknowledgments
The research at the University of
Maryland is supported by NSF grant
AGS-1158206 and AFOSR/MURI grant
FA95501410019. B.E. acknowledges the
UK Engineering and Physical Sciences
Research Council for supporting this
work under grant EP/M009386/1. The
paper contains no observational data,
and for the simulation data please
contact ssh@astro.umd.edu.

 1944799x, 2016, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1002/2016R

S005953 by C
ochrane Poland, W

iley O
nline L

ibrary on [27/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Lysak, R. L. (1990), Electrodynamic coupling of the magnetosphere and ionosphere, Space Sci. Rev., 52(1–2), 33–87.
Lysak, R. L. (1997), Propagation of Alfvén waves through the ionosphere, Phys. Chem. Earth, 22, 757–766.
Lysak, R. L., and Y. Song (2001), A three-dimensional model of the propagation of Alfvén waves through the auroral ionosphere: First results,

Adv. Space Res., 28(5), 813–822.
Lysak, R. L. (2004), Magnetosphere-ionosphere coupling by Alfvén waves at midlatitudes, J. Geophys. Res., 109, A07201, doi:10.1029/

2004JA010454.
Milikh, G., E. Mishin, I. Galkin, A. Vartanyan, C. Roth, and B. Reinisch (2010), Ion outflows and artificial ducts in the topside ionosphere at

HAARP, Geophys. Res. Lett., 37, L18102, doi:10.1029/2010GL044636.
Mishin, E., W. Burke, and T. Pedersen (2005), HF-induced airglow at magnetic zenith: Theoretical considerations, Ann. Geophys., 23, 47–53.
Mishin, E., and T. Pedersen (2011), Ionizing wave via high-power HF acceleration, Geophys. Res. Lett., 38, L01105, doi:10.1029/2010GL046045.
Moore, R. C., S. Fujimaru, D. A. Kotovsky, and M. Golkowski (2013), Observations of ionospheric ELF and VLF wave generation by excitation of

the thermal cubic nonlinearity, Phys. Rev. Lett., 111, 235007.
Papadopoulos, K., A. S. Sharma, and C. L. Chang (1989), On the efficient operation of a plasma ELF antenna driven by modulation of

ionospheric currents, Comm. Plasma Phys. and Cont. Fus., 13, 1–17.
Papadopoulos, K., H.-B. Zhou, and A. S. Sharma (1994), The role of helicon waves magnetospheric and ionospheric physics, Comm. Plasma

Phys. and Cont. Fus., 15, 321.
Papadopoulos, K., N. Gumerov, X. Shao, C. L. Chang, and I. Doxas (2011a), HF driven currents in the ionosphere, Geophys. Res. Lett., 38, L12103,

doi:10.1029/2011GL047368.
Papadopoulos, K., C.-L. Chang, J. Labenski, and T. Wallace (2011b), First demonstration of HF-driven ionospheric currents, Geophys. Res. Lett.,

38, L20107, doi:10.1029/2011GL049263.
Pedersen, T. R., and E. A. Gerken (2005), Creation of visible artificial optical emissions in the aurora by high-power radio waves, Nature, 433,

498, doi:10.1038/nature03243.
Pedersen, T., B. Gustavsson, E. Mishin, E. Kendall, T. Mills, H. C. Carlson, and A. L. Snyder (2010), Creation of artificial ionospheric layers using

high-power HF waves, Geophys. Res. Lett., 37, L02106, doi:10.1029/2009GL041895.
Pilipenko, V. A. (2012), Impulsive coupling between the atmosphere and ionosphere/magnetosphere, Space Sci. Rev., 168, 533–550,

doi:10.1007/s11214-011-9859-8.
Shao, X., K. Papadopoulos, and A. S. Sharma (2009), Control of the energetic proton flux in the inner radiation belt by artificial means,

J. Geophys. Res., 114, A07214, doi:10.1029/2009JA014066.
Sharma, A. S., B. Eliasson, G. M. Milikh, A. Najmi, K. Papadopoulos, X. Shao, and A. Vartanyan (2016), Low-frequency waves in HF heating of the

ionosphere, in Low-Frequency Waves in Space Plasmas, Geophysical Monograph 216, 1st ed., edited by A. Keiling, D.-H. Lee, and
V. Nakariakov, pp. 31–49, AGU, Washington, D. C.

Stubbe, P., H. Kopka, and R. L. Dowden (1981), Generation of ELF and VLF waves by Polar Electrojet modulation: Experimental results,
J. Geophys. Res., 86, 9073–9078, doi:10.1029/JA086iA11p09073.

Stubbe, P. (1996), Review of ionospheric modification experiments at Tromso, J. Atmos. Sol. Terr. Phys., 58, 349–368, doi:10.1016/0021-9169
(95)00041-0.

Waters, C. L., R. L. Lysak, and M. D. Sciffer (2013), On the coupling of fast and shear Alfvén wave modes by the ionospheric Hall conductance,
Earth Planets Space, 65, 385–396, doi:10.5047/eps.2012.08.002.

Zhou, H. B., K. Papadopoulos, A. S. Sharma, and C.-L. Chang (1996), Electron-magnetohydrodynamic response of a plasma to an external
current pulse, Phys. Plasmas, 3, 1484, doi:10.1063/1.872009.

Radio Science 10.1002/2016RS005953

SHARMA ET AL. ELF WAVES DURING IONOSPHERIC HEATING 971

 1944799x, 2016, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1002/2016R

S005953 by C
ochrane Poland, W

iley O
nline L

ibrary on [27/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


