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Abstract
Far- UVC radiation sources of wavelengths 222 nm and 233 nm represent an interest-
ing potential alternative for the antiseptic treatment of the skin due to their high skin 
compatibility. Nevertheless, no studies on far- UVC- induced DNA damage in different 
skin types have been published to date, which this study aims for. After irradiating the 
skin with far- UVC of the wavelengths 222 and 233 nm as well as broadband UVB, the 
tissue was screened for cyclobutane pyrimidine dimer- positive (CPD+) cells using im-
munohistochemistry. The epidermal DNA damage was lower in dark skin types than 
in fair skin types after irradiation at 233 nm. Contrary to this, irradiation at 222 nm 
caused no skin type- dependent differences, which can be attributed to the decreased 
penetration depth of radiation. UVB showed the relatively strongest differences be-
tween light and dark skin types when using a suberythemal dose of 3 mJ/cm2. As 
melanin is known for its photoprotective effect, we evaluated the ratio of melanin 
content in the stratum basale and stratum granulosum in samples of different skin 
types using two- photon excited fluorescence lifetime imaging (TPE- FLIM) finding a 
higher ratio up to skin type IV– V. As far- UVC is known to penetrate only into the 
upper layers of the viable skin, the aforementioned melanin ratio could explain the 
less pronounced differences between skin types after irradiation with far- UVC com-
pared to UVB.
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1  |  BACKGROUND

Following the increased interests in room disinfection and skin an-
tisepsis during the COVID- 19 pandemic, studies have been con-
ducted to prove the bactericidal1– 6 and virucidal7– 9 potential of 
far- UVC radiation (100– 240 nm). UVC radiation (100– 280 nm) is 
known to be absorbed by nucleic acids and proteins. As a result 
of photo- induced pyrimidine dimerisation, DNA lesions including 
cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6- 4) pyrim-
idone photoproducts (6- 4PPs) are formed in microorganisms10 and 
epidermal cells11 with a generally higher abundance of CPDs.2,12 
Thus, far- UVC radiation can potentially be used for disinfection 
purposes, for example, in hospitals, but also has to be assessed re-
garding its potential risks for human health. Interestingly, it was 
shown that far- UVC radiation of 222 and 233 nm produces less 
DNA damage in skin than UVC radiation of 254 nm, which is often 
used for the disinfection of surfaces or water, but still shows bac-
tericidal effects.2,3,6 However, to date, only studies on skin type- 
dependent protection against DNA damage after irradiation with 
simulated solar UV radiation have been performed on skin,13– 17 but 
no investigations have yet been conducted on skin type- dependent 
protection against far- UVC.

In the present study, we correlated measurements of the ab-
sorptiometrically measured melanin index (MI) and histological 
assessments of irradiated skin thin sections with the two- photon ex-
cited fluorescence lifetime imaging (TPE- FLIM) visualisation of the 
distribution of melanin in the epidermis of non- irradiated skin thin 
sections and a semantic machine learning model revealing the distri-
bution of DNA damage in the epidermis.

1.1  |  Questions addressed

Does the radiation- related formation and localisation of DNA dam-
age in different skin types depend on the applied wavelength of UV 
light?

1.2  |  Experimental design

See Data S1.

2  |  RESULTS

For the visualisation of melanin distribution in human skin, cryohis-
tological thin sections of n = 13 resected skin samples of Fitzpatrick's 
skin type I– VI were evaluated. Sections were imaged using TPE- 
FLIM.18,19 The melanin distribution in the epidermis can be as-
sessed using TPE- FLIM via the mean lifetime τm, where melanin is 
a significant contributor of very short fluorescence lifetimes. The 
mean fluorescence lifetime τm is defined as the weighted average 
of the lifetime components τ1 (short lifetime component) and τ2 (long 

lifetime component) in each pixel of the image and their respective 
amplitudes a1 and a2 described as,

τm was measured along the stratum basale (SB) and along the 
upper stratum granulosum (SG). From this, the ratio of τm of SG/τm 
of SB was calculated to represent the epidermal melanin gradient.

The mean lifetime τm measured in the skin is significantly influ-
enced by the strikingly short lifetime of melanin.20,21 As a result, 
short lifetimes in the skin sections correlate with a high melanin con-
centration in the skin. As a first step, the MI of the skin samples was 
determined in order to obtain a quantifiable indication of the general 
melanin content of the respective skin type. The mean lifetime of the 
SB was then correlated with the previously measured MI of the skin. 
Figure 1A shows a corresponding exponentially decreasing fluores-
cence lifetime with increasing amount of melanin. The dependence 
of fluorescence lifetime and MI could be fitted using an exponential 
decay function with a = 183,11; b = 33.54 and an adjusted R2 = 0.71 
described as,

Interestingly, the distinction between relatively dark skin types is more 
difficult, as the short lifetime of melanin approximates the detection 
limit of time- correlated single- photon counting (instrument response 
function) between 80 and 100 ps.22 Thus, the curve flattens out to-
wards higher MI values because of the high sensitivity of TPE- FLIM to 
the high fluorescence of melanin. As presented in Figure 1B, the mean 
lifetime in the SG of light skin types decreases comparatively less as 
compared to the SB with an inverse linear correlation with an adjusted 
R2 = 0.93, intercept n = 1111.11 ± 10.04 and slope m = −0.89 ± 0.02 de-
scribed as,

Resulting from this, the ratio of the mean lifetime in the SG and SB, 
representing the melanin gradient of the skin from basal to corneal, 
increases with the MI, indicating a stronger melanin gradient in darker 
skins (Figure 1C). Interestingly, the skin with a MI of 998 has a lower 
ratio of the mean lifetime in the SG and SB, presumably due to a satura-
tion of basal melanin, where only the increase of melanin in SG can be 
detected. However, this effect should be further investigated in future 
studies to provide an improved representation of the relationship be-
tween the two variables.

Representative histological sections (CPD+ staining and un-
stained TPE- FLIM images) are depicted in Figure 1D to show the 
melanin content and distribution in the different skin types.

In parallel, we irradiated the human skin resected at least 24 h 
after surgery with 10% of a minimum erythema dose (MED) (3 mJ/
cm2) with a broadband UVB lamp, with a 233 nm LED and a 222 nm 
excimer lamp with a microbiocidal dose (40 mJ/cm2)2,23 and evaluated 
the abundance of CPD- positive (CPD+) cells immunohistologically.1,2 

(1)�m =
a1�1 + a2�2

a1 + a2

(2)FIT
�mSB

= e
a

MI+b

(3)FIT
�mSG

= n + (mMI)
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1584  |    BUSCH et al.

The individual doses were chosen based on a publication by Zwicker 
et al.,2 who demonstrated that after irradiation with UVB at 10% 
of a MED (Fitzpatrick skin type II), CPD+ cells are highly abundant 
in light skin types. To avoid a possible saturation effect on CPD+ 
abundance after irradiation with UVB in light skin types and to en-
sure comparability between light and dark skin types, we decided 
not to increase the dose and to compare it with microbiocidal doses 
of far- UVC. The far- UVC doses applied (40 mJ/cm2) were also within 
the sub- erythemal range, as shown in recent publications by Eadie 
et al.24 and Zamudio Díaz et al.12

Furthermore, the area score of CPD+ cells representative for the 
distribution of DNA damage in the epidermis was calculated using 
a semantic machine learning model as previously described else-
where.25 The area score Sarea was calculated as the ratio of the area 
of the epidermis and the area of semantic segmentation maps of 
damaged cells in the epidermis.

It is noticeable that after irradiation with 10% MED UVB, skin 
type I– III showed an increased abundance of CPD+ cells by a factor 
of two as compared to skin type IV– VI (Figure 2A, p < 0.05). This dif-
ference is also evident for 233 nm 40 mJ/cm2, while no differences 

were observed for 222 nm 40 mJ/cm2. This could be related to the 
fact that the penetration depth of UVB is known to be higher than 
that of far- UVC.2,12,26 Furthermore, it is known that the penetration 
depth of 233 nm is slightly increased compared to 222 nm.2 Dark skin 
types have a higher melanin content than light skin types, especially 
in the SB, while the differences in the SG between skin types are 
smaller as already presented. As UVB penetrates the entire epider-
mis, skin types IV– VI show increased protection. Due to the fact that 
222 nm penetrates the skin only superficially and the difference in 
melanin content between light and dark skin types is comparatively 
smaller in this area, the abundance of CPD+ cells in the skin showed 
no significant differences between the skin types.

Using the area score, which is suitable for mapping the depth 
of damage, the differences in damage for UVB and 233 nm were 
less pronounced between light and dark skin types (Figure 2B). 
However, we found (partially) intact basal layers in two of the four 
dark skin sections evaluated after irradiation with UVB (Example 
Figure 2C), while the other two skin sections showed evenly dis-
tributed lesional areas. On the other hand, the light skin counter 
parts showed CPD+ cells in the whole epidermis. This might be 

F I G U R E  1  (A) Inverse correlation of the mean fluorescence lifetime τm of the stratum basale (SB) and melanin index (MI) fitted by 
an exponential decay function (golden line) with an adjusted R2 of 0.71 including the 95% confidence band (golden area) as well as 95% 
prediction band (dotted line). (B) Correlation of the mean fluorescence lifetime τm of the stratum granulosum (SG) and MI fitted by an 
inverse linear function (red line) with an adjusted R2 of 0.93 including the 95% confidence band (red area) as well as 95% prediction band 
(dotted line). (C) Representation of the ratio of mean fluorescence lifetime τm of the SG and SB in dependence of the MI. Data of n = 13 ex 
vivo skin samples. (D) Illustration of histological sections with immunohistological CPD+ staining representative for the different skin types 
(upper row, arrows were used to mark the basal melanin) as well as unstained cryohistological TPE- FLIM images with representation of the 
mean fluorescence lifetime τm visualised in false colours for lifetimes between 150 ps (orange) and 1300 ps (blue) (lower row). Scale bars are 
corresponding to 50 μm. The authors refer to the online version of the article for colour representation.
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an indication for a photoprotective effect of melanin in the basal 
layer. The insignificant difference could be due to the fact that the 
machine learning model is not yet trained for dark skin sections 
and that melanin darkens the skin in the area of the basal layer 
even in the absence of special stains for labelling melanin, such 
as the Fontana- Masson stain, and can thus cause false- positive 
results in the machine learning model. Additionally, the depth of 
the epidermis is locally different in the skin, resulting in varying 
SG/SB thicknesses and heterogeneous photoprotective effects 
(Example Figure 2C). Furthermore, the intradonor distribution of 
melanin along the basal layer can be heterogeneous and thus lead 
to varying amounts of CPD+ cells which requires the analysis of 
entire thin sections.

Fayujigbe et al. succeeded in visualising the differences in the 
degree of damage in different sections of the skin in different skin 
types13,15 showing a protection of the stem cells in dark skin types, 
which is attributable to the photoprotective effect of melanin.27,28 
Here, fluorescence staining was used, which allows a broader range 
of detection of CPD+ cells. Furthermore, it should be considered 
that this is a pilot study with a relatively small sample size, which was 
conducted ex vivo.

In the far- UVC range, differences in area were still evident for 
233 nm as the damage extended to approximately the middle of 
the epidermis (Figure 2C), where the difference between light and 
dark skin types in terms of melanin content is greater than in the 

upper region of the epidermis (exemplary graphics of FLIM param-
eters τm and τ1 are presented in Figure 2D). Here, the depth of DNA 
lesions is slightly shallower for dark skin, as compared to light skin 
(Figure 2C).

After irradiation with 222 nm, differences between skin types 
were no longer evident, although an evaluation basis was still pres-
ent with 15– 20 positive nuclei directly below the stratum corneum 
per donor evaluated.

3  |  CONCLUSIONS AND PERSPEC TIVES

The effects of far- UVC radiation on different skin types were eval-
uated for the first time in the presented pilot study. The findings 
give an indication that far- UVC radiation has a different effect than 
UVB light on different skin types. Far- UVC radiation produced less 
pronounced differences in DNA damage in light and dark skin types 
compared to UVB radiation which can be attributed to the localisa-
tion and concentration of melanin in the skin. Furthermore, it was 
demonstrated that differences in DNA damage between light and 
dark skin types might result from the different penetration depths of 
222 and 233 nm far- UVC radiation. However, to confirm the hypoth-
eses, future studies will need to look more closely at larger samples 
and also conduct in vivo studies. The results are important for the 
future application of far- UVC systems for skin decolonisation.

F I G U R E  2  Representation of the abundance (A) as wells as area score (B) of CPD+ epidermal cells for Fitzpatrick's skin types I– III (blue 
columns) and IV– VI (green columns) for irradiation with UVB 3 mJ/cm2, 233 nm 40 mJ/cm2 and 222 nm 40 mJ/cm2 with corresponding 
representative images showing the damaged area labelled with a red line relative to the total epidermal area labelled with a green line (C). 
(D) shows TPE- FLIM images with the epidermal distribution of the mean fluorescence lifetime τm visualised continuously in false colours for 
lifetimes between 150 ps (orange) and 1300 ps (blue) as well as the fluorescence lifetime τ1 shown for discrete sections in false colours with 
0– 150 ps (red), 150– 300 ps (green) and 300– 1300 ps (blue). The images show that the calculated ratio of τm of SG/τm of SB is representative 
for a melanin gradient in the skin. Asterisks showing statistical significance with *p < 0.05 based on a two- tailed Mann– Whitney U test. Data 
of n = 3– 7 ex vivo skin samples. Scale bars are corresponding to 100 μm (C) and 10 μm (D). The authors refer to the online version of the 
article for colour representation.
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